Skip to main content
Log in

Morphological variation of Melanargia russiae (Esper, 1783) (Lepidoptera, Satyridae) from the main part of the range and in case of its expansion to the north under climate change conditions

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

A climate-related shift in the range boundaries of the western–central Eurasian subboreal species Melanargia russiae in the Ural region from the northern forest-steppe zone to pine–birch forests was found. Morphological variation of M. russiae wings from the boundary northern populations and populations from the main part of the range in the Urals were studied. The results of a complex analysis of the morphological traits (size, wing shape, and wing pattern eyespots) confirm the hypothesis that the local population formed in the south of Sverdlovsk oblast and contradict the hypothesis of the migratory origin of M. russiae imago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baguette, M., Petit, S., and Quéva, F., Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation, J. Appl. Ecol., 2000, vol. 37, no. 1, pp. 100–108.

    Article  Google Scholar 

  • Bale, J.S., Masters, G.J., Hodkinson, I.D., et al., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores, Global Change Biol., 2002, vol. 8, pp. 1–16.

    Article  Google Scholar 

  • Bálint, Z. and Katona, G., Notes on the Hungarian populations of Melanargia russiae (Esper, 1783) extinct since a hundred years (Lepidoptera: Nymphalidae, Satyrinae), Ann. Hist.-Nat. Mus. Natl. Hung., 2013, vol. 105, pp. 179–198.

    Google Scholar 

  • Battisti, A., Forests and climate change—lessons from insects, iForest–Biogeosci. For., 2008, no. 1, pp. 1–5.

    Google Scholar 

  • Bookstein, F.L., Morphometric Tools for Landmark Data: Geometry and Biology, New York: Cambridge Univ. Press, 1991.

    Google Scholar 

  • Cardini, A. and Loy, A., On growth and form in the “computer era”: from geometric to biological morphometrics, Hystrix, 2013, vol. 24, no. 1, pp. 1–5.

    Google Scholar 

  • Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2014 g. (A Report on Specific Climate in Russian Federation in 2014), Moscow, 2015}

  • Geograficheskii atlas Orenburgskoi oblasti (Geographical Atlas of Orenburg Oblast), Chibilev, A.A.}, Ed., Moscow: DIK}, 199

  • Gorbunov, P. and Kosterin, O., The Butterflies (Hesperioidea and Papilionoidea) of North Asia (Asian part of Russia) in Nature, Moscow: Rodina & Fodio, 2007, vol. 2.

    Google Scholar 

  • Gorbunov, P.Yu. and Ol’shvang, V.N., Fauna of butterflies (Lepidoptera, Rhopalocera) from Southern, Central, and Northern Ural, in Uspekhi entomologii na Urale (Advances in Entomology of Ural), Yekaterinburg: Ural. Otd., Russ. Entomol. O-va, 1997, pp. 88–97.

    Google Scholar 

  • Habel, J.C., Schmitt, T., and Müller, P., The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: the phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera), J. Biogeogr., 2005, vol. 32, pp. 1489–1497.

    Article  Google Scholar 

  • Habel, J.C., Lens, L., Rödder, D., and Schmit, T., From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the Marbled White butterfly Melanargia galathea, BMC Evol. Biol., 2011, vol. 11, no. 215. doi doi 10.1186/1471-2148-11-215

    Google Scholar 

  • Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1.

    Google Scholar 

  • Hill, J.K., Thomas, C.D., and Blakeley, D.S., Evolution of flight morphology in a butterfly that has recently expanded its geographic range, Oecologia, 1999, vol. 121, pp. 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Illan, J.G., Gutiérrez, D., Diez, S., and Wilson, R., Elevational trends in butterfly phenology: implications for species responses to climate change, Ecol. Entomol., 2012, vol. 37, pp. 134–144.

    Article  Google Scholar 

  • Ivonin, V.V., Kosterin, O.E., Nikolaev, S.L., Butterflies (Lepidoptera, Diurna) of Novosibirsk oblast, Russia. 1. Hesperiidae, Papilionidae, Pieridae, Evraziat. Entomol. Zh., 2009, vol. 8, no. 1, pp. 85–104.

    Google Scholar 

  • Klingenberg, C.P., MorphoJ: an integrated software package for geometric morphometrics, Mol. Ecol. Res., 2011, vol. 11, pp. 353–357.

    Article  Google Scholar 

  • Knyazev, S.A., Butterflies (Lepidoptera, Diurna) of Omsk oblast, Russia, Evraziat. Entomol. Zh., 2009, vol. 8, no. 4, pp. 441–461.

    Google Scholar 

  • Korshunov, Yu.P., Fauna and biotope location of Rhopalocera insects in Northern Baraba, in Fauna i ekologiya nasekomykh Sibiri Fauna and Ecology of Insects in Siberia, Novosibirsk: Nauka, 1974, pp. 32–39.

    Google Scholar 

  • Krasheninnikov, I.M. and Vasil’ev, Ya.Ya., Forest-steppe of the western slope of Southern Ural, Tr. Pochv. Inst. im. V.V. Dokuchaeva, Akad. Nauk SSSR, 1949, vol. 30, pp. 143–178.

    Google Scholar 

  • Kulikov, P.V., Konspekt flory Chelyabinskoi oblasti (sosudistye rasteniya) Catalogue of Flora of Chelyabinsk Oblast: Vascular Plants, Yekaterinburg: Geotur, 2005.

    Google Scholar 

  • Kulikov, P.V., Zolotareva, N.V., and Podgaevskaya, E.N., Endemichnye rasteniya Urala vo flore Sverdlovskoi oblasti Endemic Plants of Ural in Flora of Sverdlovsk Oblast, Yekaterinburg: Goshchitskii, 2013.

    Google Scholar 

  • Metody otsenki posledstvii izmeneniya klimata dlya fizicheskikh i biologicheskikh sistem (Evaluation of Climate Change Consequences for Physiological and Biological Systems), Moscow: Rosgidromet}, 2012

  • Musolin, D.L. and Saulich, A.Kh., Responses of insects to the current climate changes: from physiology and behavior to range shifts, Entomol. Rev., 2012, vol. 92, no. 7, pp. 715–740.

    Article  Google Scholar 

  • Naumenko, N.I., Flora i rastitel’nost’ yuzhnogo Zaural’ya Flora and Vegetation of Southern Trans-Ural Region, Kurgan: Kurgansk. Gos. Univ., 2008.

    Google Scholar 

  • Parmesan, C., Ecological and evolutionary responses to climate changes, Annu. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 637–669.

    Article  Google Scholar 

  • Parmesan, C. and Yohe, G., A globally coherent fingerprint of climate change impacts across natural systems, Nature, 2003, vol. 421, pp. 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Pavlinov, I.Ya. and Mikeshina, N.G., Principles and methods of geometric morphometry, Zh. Obshch. Biol., 2002, vol. 63, pp. 473–493.

    PubMed  Google Scholar 

  • Rohlf, F.J., TpsDig Version 2.10. Ecology & Evolution: Program, New York: Suny at Stony, 2006.

    Google Scholar 

  • Rohlf, F.J., TpsUtil Version 1.40. Ecology & Evolution: Program New York: Suny at Stony, 2008.

    Google Scholar 

  • Rubtsov, V.V. and Utkina, I.A., Phyllophages of forest ecosystems affected by climate change, Vestn. Mariisk. Gos. Tekh. Univ., 2010, no. 3, pp. 3–15.

    Google Scholar 

  • Saarinen, K., Lanti, T., and Marttila, O., Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000. Biodiversity Conserv., 2003, vol. 12, pp. 2147–2159.

    Article  Google Scholar 

  • Schwanwitsch, B.N., Evolution of the wing-pattern in palaearctic Satyridae. II. Genus Melanargia, Z. Morphol. Ökol. Tiere, 1931, no. 21, pp. 316–408.

    Article  Google Scholar 

  • Settele, J., Kudrna, O., Harpke, A., et al., Climatic risk atlas of European butterflies, BioRisk, 2008, vol. 1, pp. 1–712.

    Article  Google Scholar 

  • Shvartsman, Yu.G., Bolotov, I.N., and Iglovskii, S.A., Impact of climate change on environment of European North, Materialy nauchno-prakticheskoi konferentsii “Global’noe izmenenie klimata: naychnye dannye, problemy i reshsniya. Regional’nyi aspekt” (Proc. Sci.-Pract. Conf. “Global Climate Change: Scientific Data, Problems and Solutions. Regional Aspects”), Arkhangelsk, 2007, pp. 14–21.

    Google Scholar 

  • Sparks, T., Dennis, R., Croxton, Ph., and Cade, M., Increased migration of Lepidoptera linked to climate change, Eur. J. Entomol., 2007, vol. 104, pp. 139–143.

    Article  Google Scholar 

  • Tatarinov, A.G., Landscape-zonal distribution of butterflies (Lepidoptera, Papilionoidea, Hesperioidea) in the northeast of the Russian Plain, Entomol. Rev., 2013, vol. 93, no. 1, pp. 56–68.

    Article  Google Scholar 

  • Tatarinov, A.G. and Gorbunov, P.Yu., The structure and spatial organization of the butterfly fauna (Lepidoptera, Rhopalocera) of the Ural Mountains, Entomol. Rev., 2014, vol. 94, no. 4, pp. 541–561.

    Article  Google Scholar 

  • Ukhova, N.L. and Ol’shvang, V.N., Bespozvonochnye zhivotnye Visimskogo zapovednika. Annotirovannyi spisok vidov Invertebrates of Visimskiy Nature Reserve. Annotated List of Species, Yekaterinburg: Raritet, 2014.

    Google Scholar 

  • Van Swaay, C.A.M. and Warren, M.S., Red Data Book of European butterflies (Rhopalocera), in Nature and Environment No. 99, Strasbourg: Council of Europe, 1999.

    Google Scholar 

  • Van Swaay, C., Warren, M., and Loïs, G., Biotope use and trends of European butterflies, J. Insect Conserv., 2006, vol. 10, pp. 189–209.

    Article  Google Scholar 

  • Vasil’ev, A.G., Epigeneticheskie osnovy fenetiki: na puti k populyatsionnoi meronomii Epigenetic Principles of Phenetics: Towards Meronomy, Yekaterinburg: Akademkniga, 2005.

    Google Scholar 

  • Vasil’ev, A.G., Fast epigenetic transformations of populations as one of the probable mechanisms of the global biocenotic crisis, Biosfera, 2009, vol. 1, no. 2, pp. 166–177.

    Google Scholar 

  • Vasil’ev, A.G., The problem of stability of forpost populations and communities: from theory to evaluation methods, Materialy IV nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem “Biologicheskie sistemy: ustoichivost’, printsypy i mekhanizmy funktsionirovaniya” (Proc. IV Sci.-Pract. Conf. with Int. Participation “Biological Systems: Resistance, Principles, and Mechanisms”), Nizhny Tagil: Nizhetagilsk. Gos. Sots.-Pedagog. Inst., 2012, part 1, pp. 76–80.

    Google Scholar 

  • Weather and climate. http://www.pogodaiklimat.ru/file.htm

  • Wilson, R.J., Gutiérrez, D., Gutiérrez, J., et al., Changes to the elevational limits and extent of species ranges associated with climate change, Ecol. Lett., 2005, vol. 8, pp. 1138–1146.

    Article  PubMed  Google Scholar 

  • Zakharova, E.Yu., Seasonal variability of wing length and eyespots in populations of Erebia ligea (L.) (Lepidoptera, Satyridae) in the Middle Urals, Entomol. Rev., 2010, vol. 90, no. 6, pp 669–678.

    Article  Google Scholar 

  • Zelditch, M.L., Swiderski, D.L., Sheets, H.D., et al., Geometric Morphometrics for Biologist: A Primer, New York: Elsevier, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Zakharova.

Additional information

Original Russian Text © E.Yu. Zakharova, A.O. Shkurikhin, T.S. Oslina, 2017, published in Sibirskii Ekologicheskii Zhurnal, 2017, No. 5, pp. 567–582.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, E.Y., Shkurikhin, A.O. & Oslina, T.S. Morphological variation of Melanargia russiae (Esper, 1783) (Lepidoptera, Satyridae) from the main part of the range and in case of its expansion to the north under climate change conditions. Contemp. Probl. Ecol. 10, 488–501 (2017). https://doi.org/10.1134/S1995425517050146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425517050146

Keywords

Navigation