Skip to main content
Log in

Modern Liquid Embolization Agents Based on Polymers: Composition, Characteristics, and Areas of Application. Review

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

This review is devoted to an analysis of published data on liquid embolization agents based on polymers. Registered and employed brands of such agents as Onyx™, PHIL™, and Squid, as well as the less common Easyx™ and Menox™, are described. Data on their composition, properties, and application areas are given. Advantages and drawbacks of the described embolization drugs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. N. Dan, Angiodysplasias (Congenital Vascular Malformations) (Verdana, Moscow, 2008) [in Russian].

    Google Scholar 

  2. P. Chabrot, Embolization (Springer, 2013).

    Google Scholar 

  3. J. A. Goode and M. B. Matson, “Embolisation of cancer: What is the evidence?,” Cancer Imaging 4 (2), 133–141 (2004).

    Article  CAS  Google Scholar 

  4. V. N. Dan, S. V. Sapelkin, O. A. Legonkova, V. N. Tsygankov, A. B. Varava, S. A. Kedik, and E. S. Zhavoronok, “Materials and methods of arteriovenous malformations' endovascular treatment: Opportunities and problems,” Vopr. Biol., Med. Farm. Khim., No. 7, 49–52 (2016).

    Google Scholar 

  5. W. S. Rilling and G. W. Chen, “Preoperative Embolization,” Semin. Interv. Radiol. 21 (1), 3–9 (2004).

    Article  Google Scholar 

  6. A. A. Alluhaybi, S. B. Abdulqader, K. Altuhayni et al., “Preoperative trans-arterial embolization of a giant scalp congenial hemangioma associated with cardiac failure in a premature newborn,” J. Int. Med. Res. 48 (12), 1–7 (2020).

    Article  Google Scholar 

  7. D. E. Orron, A. I. Bloom, and Z. Neeman, “The role of transcatheter arterial embolization in the management of nonvariceal upper gastrointestinal bleeding,” Gastrointest. Endosc. Clin. N. Am. 28 (3), 331–349 (2018).

    Article  Google Scholar 

  8. M. B. Potts, D. W. Zumofen, E. Raz, et al., “Curing arteriovenous malformations using embolization,” Neurosurg. Focus 37 (3), E19 (2014).

    Article  Google Scholar 

  9. www.accessdata.fda.gov/cdrh_docs/pdf3/P030004c.pdf. Cited January 21, 2021.

  10. A. Poursaid, M. M. Jensen, E. Huo, et al., “Polymeric materials for embolic and chemoembolic applications,” J. Control. Release 240, 414–433 (2016).

    Article  CAS  Google Scholar 

  11. J. Lord, H. Britton, S. G. Spain, et al., “Advancements in the development on new liquid embolic agents for use in therapeutic embolization,” J. Mater. Chem. 2020 (8), 8207–8218.

  12. W. F. Yakes, J. M. Luethke, S. H. Parker, et al., “Ethanol embolization of vascular malformations,” Radio Graphics 10 (5), 787–796 (1990).

    CAS  Google Scholar 

  13. W. Taki, Y. Yonekawa, H. Iwata, et al., “A new liquid material for embolization of arteriovenous malformations,” Am. J. Neuroradiol. 11 (1), 163–168 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. S. N. Tcherbinin, E. V. Tokareva, and S. K. Yarovoi, “Radiopaque contrast agents in urological practice,” Eksp. Klin. Urol., No. 4, 63–65 (2010).

    Google Scholar 

  15. M. Ayad, E. Eskioglu, and R. Mericle, “Onyx®: A unique neuroembolic agent,” Expert Rev. Med. Devices 3 (6), 705–715 (2006).

    Article  CAS  Google Scholar 

  16. https://global.medtronic.com/xg-en/healthcare-professionals/products/cardiovascular/peripheral-embolization/onyx.html. Cited January 21, 2021.

  17. D. F. Vollherbst, C. M. Sommer, C. Ulfert, J. Pfaff, et al., “Liquid embolic agents for endovascular embolization: Evaluation of an established (Onyx) and a novel (PHIL™) embolic agent in an in vitro AVM model,” Am. J. Neuroradiol. 38 (7), 1377–1382 (2017).

    Article  CAS  Google Scholar 

  18. P. Gore, N. Theodore, L. Brasiliense, et al., “The utility of onyx for preoperative embolization of cranial and spinal tumors,” Neurosurgery 62 (6), 1204–1212 (2008).

    Article  Google Scholar 

  19. M. S. Elhammady, E. C. Peterson, J. N. Johnson, et al., “Preoperative Onyx embolization of vascular head and neck tumors by direct puncture,” World Neurosurg. 77 (5) (2012).

  20. W. Weber, B. Kis, R. Siekmann, and D. Kuehne, “Endovascular treatment of intracranial arteriovenous malformations with Onyx: Technical aspects,” Am. J. Neuroradiol. 28 (2), 371–377 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. J. D. Rabinov, A. J. Yoo, C. S. Ogilvy, et al., “ONYX versus n-BCA for embolization of cranial dural arteriovenous fistulas,” J. Neurointerv. Surg. 5 (4), 306–310 (2012).

    Article  Google Scholar 

  22. J. Urbano, Cabrera J. Manuel, A. Franco, et al., “Selective arterial embolization with ethylene-vinyl alcohol copolymer for control of massive lower gastrointestinal bleeding: feasibility and initial experience,” J. Vasc. Interv. Radiol. 25 (6), 839–846 (2014).

    Article  Google Scholar 

  23. M. Szajner, T. Roman, J. Markowicz, et al., “Onyx® in endovascular treatment of cerebral arteriovenous malformations—a review,” Pol. J. Radiol. 78 (3), 35–41 (2013).

    Article  Google Scholar 

  24. L. D. Codina, M. M. Crisol, A. G. Castel, et al., EU Patent No. 3653656 (May 20, 2020).

  25. J. K. Aronson, Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions, 16th ed. (Elsevier, Amsterdam, 2015).

    Google Scholar 

  26. B. K. Madsen, M. Hilscher, D. Zetner, et al., “Adverse reactions of dimethyl sulfoxide in humans: A systematic review,” F1000Research 7, 1746 (2019).

  27. C. F. Brayton, “Dimethyl sulfoxide (DMSO): A review,” Cornell Vet. 76 (1), 61–90 (1986).

    CAS  PubMed  Google Scholar 

  28. M. Guimaraes and M. Wooster, “Onyx (ethylene-vinyl alcohol copolymer) in peripheral applications,” Semin. Interv. Radiol. 23 (3), 350–356 (2011).

    Article  Google Scholar 

  29. R. Pop, L. Mertz, A. Ilyes, et al., “Beam hardening artifacts of liquid embolic agents: Comparison between squid and onyx,” J. Neurointerv. Surg. 11 (7), 706–709 (2018).

    Article  Google Scholar 

  30. www.merillife.com/assets/pdfs/medical-devices/menox-1603358656pdf.pdf. Cited January 21, 2021.

  31. Y. Loh and G. R. Duckwiler, “A prospective, multicenter, randomized trial of the onyx liquid embolic system and n-butyl cyanoacrylate embolization of cerebral arteriovenous malformations,” J. Neurosurg. 113 (4), 733–741 (2010).

    Article  Google Scholar 

  32. I. Akmangit, E. Daglioglu, et al., “Preliminary experience with squid: A new liquid embolizing agent for AVM, AV fistulas and tumors,” Turk. Neurosurg. 24 (4), 565–570 (2014).

    PubMed  Google Scholar 

  33. https://baltspainmedical.es/wp-content/uploads/2019/06/ SQUIDPERI-cat%C3%A1logo.pdf. Cited January 21, 2021.

  34. J. Mason, C. Dodge, and G. Benndorf, “Quantification of tantalum sedimentation rates in liquid embolic agents,” Interv. Neuroradiol. 24 (5), 574–579 (2018).

    Article  CAS  Google Scholar 

  35. “New liquid embolic agents, Squidperi 34 and 34LD, get CE mark,” Interv. News 69, 12 (2018).

  36. E. Lozupone, S. Bracco, P. Trombatore, et al., “Endovascular treatment of cerebral dural arteriovenous fistulas with SQUID 12,” Interv. Neuroradiol. 26 (5), 651–657 (2020).

    Article  Google Scholar 

  37. C. Perez-Garcia, S. Rosati, F. J. Serrano-Hernando, et al., “Preoperative squid embolization of carotid paragangliomas with direct puncture,” Neuroradiol. J. 33 (3), 224–229 (2020).

    Article  Google Scholar 

  38. M. Venturini, L. Augello, C. Lanza, et al., “Emergency tips recanalisation and gastroesophageal varices embolisation with an ethylene vinyl alcohol copolymer agent (Squid) and detachable coils,” Eur. Radiol. Experimen. 4 (1), 67 (2020).

    Article  Google Scholar 

  39. Salik A. Erbahceci, F. Islim, A. Akgul, and B. E. Cil, “Concomitant transarterial and transvenous embolization of a pelvic arteriovenous malformation using a new liquid embolic agent, Squid-12 and detachable coils,” Case Rep. Vasc. Med. 2014, 972870 (2014).

  40. M. Venturini, C. Lanza, P. Marra, et al., “Transcatheter embolization with Squid, combined with other embolic agents or alone, in different abdominal diseases: A single-center experience in 30 patients,” CVIR Endovasc. 2 (8), 2 (2019).

    Article  Google Scholar 

  41. A. Prashar, S. Butt, and N. Shaida, “Introducing PHIL (precipitating hydrophobic injectable liquid)—a new embolic agent for the body interventional radiologist,” Diagn. Interv. Radiol. 26 (2), 140–142 (2020).

    Article  Google Scholar 

  42. www.vingmed.se/wp-content/uploads/2013/10/PHIL-Brochure-Intl. pdf.pdf. Cited January 21, 2021.

  43. D. F. Vollherbst, R. Otto, M. Hantz, et al., “Investigation of a new version of the liquid embolic agent PHIL with extra-low-viscosity in an endovascular embolization model,” Am. J. Neuroradiol. 39 (9), 1696–1702 (2018).

    Article  CAS  Google Scholar 

  44. S. Lamin, H. S. Chew, S. Chavda, et al., “Embolization of intracranial dural arteriovenous fistulas using PHIL liquid embolic agent in 26 patients: A multicenter study,” Am. J. Neuroradiol. 38 (1), 127–131 (2016).

    Article  Google Scholar 

  45. D. F. Vollherbst, R. Otto, T. Do, et al., “Imaging artifacts of Onyx and PHIL on conventional CT, cone-beam CT and MRI in an animal model,” Interv. Neuroradiol. 24 (6), 693–701 (2018).

    Article  Google Scholar 

  46. J. Hu, H. Albadawi, B. W. Chong, A. R. Deipolyi, et al., “Advances in biomaterials and technologies for vascular embolization,” Adv. Mater. 31 (33) (2019).

  47. S. S. Sirakov, A. Sirakov, K. Minkin, et al., “Initial experience with precipitating hydrophobic injectable liquid in cerebral arteriovenous malformations,” Interv. Neuroradiol. 25 (1), 58–65 (2019).

    Article  Google Scholar 

  48. E. A. Samaniego, C. P. Derdeyn, M. Hayakawa, et al., “In vivo evaluation of the new PHIL low viscosity in a swine rete mirabile model,” Interv. Neuroradiol. 24 (6), 706–712 (2018).

    Article  Google Scholar 

  49. Z. Kulcsar, A. Karol, P. W. Kronen, et al., “A novel, non-adhesive, precipitating liquid embolic implant with intrinsic radiopacity: Feasibility and safety animal study,” Eur. Radiol. 27 (3), 1248–1256 (2016).

    Article  Google Scholar 

  50. S. Maudens, PhD Thesis (Universite de Geneve, Geneve, 2018).

  51. https://clinicaltrials.gov/ct2/show/study/NCT03477149. Cited January 21, 2021.

  52. https://meddev.bda.bg/en/md_details/50804. Cited January 26, 2021.

  53. S. Sirakov, A. Sirakov, K. Minkin, et al., “Initial experience with the new ethylene vinyl alcohol copolymer based liquid embolic agent menox in the endovascular treatment of cerebral arteriovenous malformations,” J. Neurointerv. Sur. 11 (10), 1040–1044 (2019).

    Article  Google Scholar 

  54. A. Sirakov, K. Minkin, and S. Sirakov, “Intermixed dimethyl-sulfoxide-based nonadhesive liquid embolic agents delivered serially via the same microcatheter for cerebral AVM treatment,” Am. J. Neuroradiol. 44 (4), 681–686 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Reshetnyak.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetnyak, D.V., Zhavoronok, E.S., Legon’kova, O.A. et al. Modern Liquid Embolization Agents Based on Polymers: Composition, Characteristics, and Areas of Application. Review. Polym. Sci. Ser. D 15, 64–70 (2022). https://doi.org/10.1134/S1995421222010154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421222010154

Keywords:

Navigation