Skip to main content
Log in

Synthesis of Cardanol-Containing Resols for Producing Phenolic Films: Protective Coatings for Wood Composites

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

This paper investigates synthesis of impregnating phenol–formaldehyde resins in which up to 30 wt % formulation phenol is replaced by cardanol, a plant product. The resulting resins were used to make impregnated paper for laminating the plywood and particle boards. The synthesis and structure of cardanol-containing water-soluble resols were studied by IR spectroscopy and 1H NMR, and the reactivity of phenol cardanol formaldehyde resins at 80–150°C was studied by differential scanning calorimetry. The optimal amount of cardanol in relation to phenol in the resin structure was determined. It is shown that the introduction of cardanol into the composition of phenol–formaldehyde resins reduces the impregnation time of kraft paper and improves the surface quality and elasticity of the impregnated paper, with the use of such paper making it possible to decrease the water absorption of laminated particle board materials and the emission of formaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Gardziella, L. A. Pilato, and A. Knop, Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology (Springer-Verlag, Berlin, 2000).

    Book  Google Scholar 

  2. J. Talbiersky, J. Polaczek, R. Ramamoorty, and O. Shishlov, “Phenols from cashew nut shell oil as a feedstock for making resins and chemicals,” Oil Gas Eur. Mag., No. 1, 33–39 (2009).

  3. A. Parambath, Cashew Nut Shell Liquid: A Goldfield for Functional Materials (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-47455-7

    Book  Google Scholar 

  4. N. S. Baulina, O. F. Shishlov, V. V. Glukhikh, N. G. Chistova, and O. V. Stoyanov, “Preparation and properties of wooden fiberboards with phenol cardanol formaldehyde adhesives,” Polym. Sci., Ser. D 9 (4), 368–373 (2016).

    CAS  Google Scholar 

  5. F. Cardona, A. L. Kin-Tak, and J. Fedrigo, “Novel phenolic resins with improved mechanical and toughness properties,” J. Appl. Polym. Sci. 123, 2131–2139 (2012).

    Article  CAS  Google Scholar 

  6. C.-M. Lubi and E. T. Thachil, “Particleboard from cashew nut shell liquid,” Polym.-Plast. Technol. Eng. 46 (4), 393–400 (2007).

    Article  CAS  Google Scholar 

  7. J.-M. Raquez, M. Deléglise, M.-F. Lacrampe, and P. Krawczak, “Thermosetting (bio) materials derived from renewable resources: A critical review,” Prog. Polym. Sci. 35, 487–509 (2010).

    Article  CAS  Google Scholar 

  8. O. F. Shishlov, D. P. Troshin, N. S. Baulina, V. V. Glukhikh, and O. V. Stoyanov, “Synthesis and properties of glues for densified laminated wood based on alcohol-soluble phenol-cardanol-formaldehyde resolic resins,” Polym. Sci., Ser. D 8 (1), 37–41 (2015).

    CAS  Google Scholar 

  9. A. C. H. Barreto, D. S. Rosa, P. B. A. Fechine, and S. E. Mazzetto, “Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites,” Composites 42, 492–500 (2011).

    Article  Google Scholar 

  10. A. C. H. Barreto, M. A. Esmeraldo, D. S. Rosa, et al., “Cardanol biocomposites reinforced with jute fiber: Microstructure, biodegradability and mechanical properties,” Polym. Compos. 31, 1928–1937 (2010).

    Article  CAS  Google Scholar 

  11. A. E. Júnior, A. Barreto, D. S. Rosa, et al., “Thermal and mechanical properties of biocomposites based on a cashew nut shell liquid matrix reinforced with bamboo fibers,” J. Compos. Mater. 47 (18), 2203–2215 (2015).

    Article  Google Scholar 

  12. A. Balaji, B. Karthikeyan, J. Swaminathan, and C. Sundar, “Mechanical and thermal properties of untreated bagasse fiber reinforced cardanol eco-friendly biocomposites,” Adv. Nat. Appl. Sci. 11, 73–81 (2017).

    CAS  Google Scholar 

  13. A. K. Misra and G. N. Pandey, “Kinetics of alkaline-catalyzed cardanol-formaldehyde reaction. I,” J. Appl. Polym. Sci. 29, 361–372 (1984).

    Article  CAS  Google Scholar 

  14. A. K. Misra and G. N. Pandey, “Kinetics of alkaline-catalyzed cardanol-formaldehyde reaction. II. Mechanism of the reaction,” J. Appl. Polym. Sci. 30, 969–977 (1985).

    Article  CAS  Google Scholar 

  15. A. K. Misra and G. N. Pandey, “Kinetics of alkaline-catalyzed cardanol-formaldehyde reaction. III. Determination of composition of the resin,” J. Appl. Polym. Sci. 30, 979–983 (1985).

    Article  CAS  Google Scholar 

  16. N. H. Isaiah, M. Yaseen, and J. S. Aggarwal, “Kinetics of reaction between meta-substituted long chain alkyl phenols and formaldehyde,” Angew. Makromol. Chem. 24 (1), 163–169 (1972).

    Article  CAS  Google Scholar 

  17. F. Cardona and T. H. Sultan, “Characterization of environmentally sustainable resole phenolic resins synthesized with plant-based bioresources,” BioResources 11, 965–983 (2016).

    Article  CAS  Google Scholar 

  18. S. Vyazovkin, A. K. Burnham, J. M. Criado, et al., “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data,” Thermochim. Acta 520 (1–2), 1–19 (2011).

  19. S. Vyazovkin, “Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature,” J. Comput. Chem. 18 (3), 393–402 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Shishlov.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishlov, O.F., Baulina, N.S., Glukhikh, V.V. et al. Synthesis of Cardanol-Containing Resols for Producing Phenolic Films: Protective Coatings for Wood Composites. Polym. Sci. Ser. D 14, 328–334 (2021). https://doi.org/10.1134/S1995421221030308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421221030308

Keywords:

Navigation