Skip to main content
Log in

Amino Acid Composition of Green Microalgae and Diatoms, Cyanobacteria, and Zooplankton (Review)

  • ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

We have reviewed foreign and domestic literature devoted to the study of the amino acid (AA) composition of aquatic organisms representing major groups of producers (green microalgae and diatoms, and cyanobacteria) and primary consumers (zooplankton). Based on published data, we estimate the composition of essential and nonessential AAs of microalgae, cyanobacteria, and zooplankton and determine their differences. It is concluded that the AA composition of major groups of plankton is heterogeneous. The role of AAs as a limiting factor for the development of herbivorous zooplankton is discussed. The prospects and the need for further study of AA composition in order to develop a complete theory of functioning of aquatic ecosystems have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Goryunova, S.V., Rzhanova, G.N., and Orlananskii, V.N., Sinezelenye vodorosli (Cyanobacteriae), Moscow: Nauka, 1969.

  2. Elyakova, L.A., Svetashova, T.G., and Lakizova, I.Yu., The role of histidine for the activity of β-1,3-glucanase IV from Spisula sachalinensis, Bioorg. Khim., 1977, vol. 3, no. 3, pp. 415–421.

    CAS  Google Scholar 

  3. Kolmakova, A.A., Gladyshev, M.I., and Kalacheva, G.S., Differences in the amino acid content of dominant phytoplankton species from a eutrophic reservoir, Dokl. Biol. Sci., 2007, vol. 415, no. 5, pp. 310–312.

    Article  CAS  PubMed  Google Scholar 

  4. Sakevich, A.I. and Klochenko, P.D., Free amino acids in the ecological metabolism of algae, Gidrobiol. Zh., 1996, vol. 32, no. 5, pp. 33–41.

    CAS  Google Scholar 

  5. Trubachev, N.I., Gitel’zon, I.I., Kalacheva, G.S., et al., The biochemical composition of some Cyanobacteriae and Chlorella, Prikl. Biokhim. Mikrobiol., 1976, vol. 12, no. 2, pp. 196–202.

    CAS  Google Scholar 

  6. Chernova, E.N., Russkikh, Ya.V., Afonina, E.I., et al., Mass spectrometric analysis of microcystins in cyanobacterial biomass: optimization of sample preparation procedures, Ekol. Khim., 2016, vol. 24, no. 4, pp. 205–217.

    Google Scholar 

  7. Admiraal, W., Peletier, H., and Laame, R.W.P.M., Nitrogen metabolism of marine planktonic diatoms: excretion, assimilation and cellular pools of free amino acid in seven species with different cell size, J. Exp. Mar. Biol. Ecol., 1986, vol. 98, no. 3, pp. 241–263.

    Article  CAS  Google Scholar 

  8. Ahlgren, G., Gustafsson, I.-B., and Boberg, M., Fatty acid content and chemical composition of freshwater microalgae, J. Phycol., 1992, vol. 28, no. 1, pp. 37–50.

    Article  CAS  Google Scholar 

  9. Ahlgren, G. and Hyenstrand, P., Nitrogen limitation effects of different nitrogen sources on nutritional quality of two freshwater organisms, Scenedesmus quadricauda (Chlorophyceae) and Synechococcus sp. (Cyanophyceae), J. Phycol., 2003, vol. 39, pp. 906–917.

    Article  CAS  Google Scholar 

  10. Akgul, R., Kizilkaya, B., Akgul, F., and Erdugan, H., Amino acid composition and crude protein values of some Cyanobacteria from Canakkale (Turkey), Pak. J. Pharm. Sci., 2015, vol. 28, no. 5, pp. 1757–1761.

    CAS  PubMed  Google Scholar 

  11. Anderson, T.R., Boersma, M., and Raubenheimer, D., Stoichiometry: linking elements to biochemicals, Ecology, 2004, vol. 85, pp. 1193–1202.

    Article  Google Scholar 

  12. Aragao, C., Conceicao, L.E.C., Dinis, M.T., and Fuhn, H.-J., Amino acid pool of rotifers and Artemia under different conditions: nutritional implications for fish larvae, Aquaculture, 2004, vol. 234, nos. 1–4, pp. 429–445.

    Article  CAS  Google Scholar 

  13. Becker, E.W., Micro-algae as a source of protein, Biotechnol. Adv., 2007, vol. 25, pp. 207–210.

    Article  CAS  PubMed  Google Scholar 

  14. Birge, E.A. and Juday, C., The organic content of lake water, Proc. Natl. Acad. Sci. U.S.A., 1926, vol. 12, no. 8, pp. 515–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown, M.R. and Jeffrey, S.W., Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments, J. Exp. Mar. Biol. Ecol., 1992, vol. 161, no. 1, pp. 91–113.

    Article  CAS  Google Scholar 

  16. Brown, M.R. and Jeffrey, S.W., The amino acid gross composition of marine diatoms potentially useful for mariculture, J. Appl. Phycol., 1995, vol. 6, pp. 521–527.

    Article  Google Scholar 

  17. Brown, M.R., Dunstan, G.A., Norwood, S.J., and Miller, K.A., Effect of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana,J. Phycol., 1996, vol. 32, no. 1, pp. 64–73.

    Article  CAS  Google Scholar 

  18. Brucet, S., Boix, D., Lopez-Flores, R., et al., Ontogenetic changes of amino acid composition in planktonic crustacean species, Mar. Biol. (Berlin), 2005, vol. 48, no. 1, pp. 131–139.

    Article  CAS  Google Scholar 

  19. Consden, R., Gordon, A.H., and Martin, A.J.P., Qualitative analysis of proteins: a partition chromatographic method using paper, Biochem. J., 1944, vol. 38, no. 3, pp. 224–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cowey, C.B. and Corner, E.D.S., On the nutrition and metabolism of zooplankton ii. the relationship between the marine copepod Calanus helgolandicus and particulate material in Plymouth sea water, in terms of amino acid composition, J. Mar. Biol. Ass. U.K., 1963, vol. 43, pp. 495–511.

    Article  CAS  Google Scholar 

  21. Cowgill, U.M., Emmel, H.W., Hopkins, D.L., et al., Variation in chemical composition, reproductive success and body weight of daphnia magna in relation to diet, Int. Rev. gesamt. Hydrobiol., Hydrogr., 1986, vol. 71, no. 1, pp. 79–99.

    Article  CAS  Google Scholar 

  22. Dabrowski, K. and Rusiecki, M., Content of total free amino acids in zooplanktonic food of fish larvae, Aquaculture, 1983, vol. 30, nos. 1–4, pp. 31–42.

    Article  CAS  Google Scholar 

  23. Dortch, Q., Effect of growth conditions on accumulation of internal nitrate, ammonium, amino acids and protein in three marine diatoms, J. Exp. Mar. Biol. Ecol., 1982, vol. 61, no. 3, pp. 243–264.

    Article  CAS  Google Scholar 

  24. Dubovskaya, O.P., Klimova, E.P., Kolmakov, V.I., et al., Seasonal dynamic of phototrophic epibionts on crustacean zooplankton in a eutrophic reservoir with cyanobacterial bloom, Aquat. Ecol., 2005, vol. 39, no. 2, pp. 167–180.

    Article  CAS  Google Scholar 

  25. Eisenhut, M., Bauwe, H., and Hagemann, M., Glycine accumulation is toxic for the cyanobacterium Synechocystis sp. strain PCC 6803, but can be compensated by supplementation with magnesium ions, FEMS Microbiol. Lett., 2007, vol. 277, no. 2, pp. 232–237.

    Article  CAS  PubMed  Google Scholar 

  26. Forster, I. and Ogata, H.Y., Lysine requirement of juvenile Japanese flounder Paralichthys olivaceus and juvenile red sea bream Pagrus major,Aquaculture, 1998, vol. 161, pp. 131–142.

    Article  CAS  Google Scholar 

  27. Fowden, L., Amino-acids of certain algae, Nature, 1951, vol. 167, pp. 1030–1031.

    Article  CAS  PubMed  Google Scholar 

  28. Fowden, L.A., A comparison of the compositions of some algal proteins, Ann. Bot., 1954, vol. 18, no. 71, pp. 257–266.

    Article  CAS  Google Scholar 

  29. Flynn, K.J. and Al-Amoudi, O.A., Effects of N deprivation and darkness on composition of free amino acid release from diatom Phaeodactylum tricornutum Bohlin, J. Exp. Mar. Biol. Ecol., 1988, vol. 119, no. 2, pp. 131–143.

    Article  CAS  Google Scholar 

  30. Granum, E., Kirkvold, S., and Myklestad, S.M., Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion, Mar. Ecol. Progr. Ser., 2002, vol. 242, pp. 83–84.

    Article  CAS  Google Scholar 

  31. Guisande, C., Maneiro, I., and Riveiro, I., Homeostasis in the essential amino acid composition of the marine copepod Euterpina acutifrons,Limnol. Oceanogr., 1999, vol. 44, no. 3, pp. 691–696.

    Article  CAS  Google Scholar 

  32. Guisande, C., Riveiro, I., and Maneiro, I., Comparison among the amino acid composition of females, eggs and food to determine the relative importance of food quantity and food quality to copepod reproduction, Mar. Ecol.: Proc. Ser., 2000, vol. 202, nos. 1–4, pp. 135–142.

    Article  CAS  Google Scholar 

  33. Guisande, C., Bartumeus, F., Ventura, M., and Catalan, J., Role of food partitioning in structuring the zooplankton community in mountain lakes, Oecologia, 2003, vol. 136, no. 4, pp. 627–634.

    Article  CAS  PubMed  Google Scholar 

  34. Guisande, C., Biochemical fingerprints in zooplankton, Limnetica, 2006, vol. 25, nos. 1–2, pp. 369–376.

    Google Scholar 

  35. Halawlaw, Y.I., Spirulina microalgae: a food for future, Pinnacle Biotech., 2014, vol. 1, no. 2, pp. 249–255.

    Google Scholar 

  36. Hanson, J.A. and Dietz, T.H., The role of free amino acids in cellular osmoregulation in the freshwater bivalve Ligumia subrostrata (Say), Can. J. Zool., 1976, vol. 54, no. 11, pp. 1927–1931.

    Article  CAS  Google Scholar 

  37. Hanamachi, Y., Hama, T., and Yanai, T., Decomposition process of organic matter derived from freshwater phytoplankton, Limnology, 2008, vol. 9, pp. 57–69.

    Article  CAS  Google Scholar 

  38. Hecky, R.E., Mopper, K., Kilham, P., and Degens, E.T., The amino acid and sugar composition of diatom cell walls, Mar. Biol. (Berlin), 1973, vol. 19, pp. 323–331.

    Article  CAS  Google Scholar 

  39. Helland, S., Triantaphullidis, G., Fuhn, H., et al., Modulation of the free pool and protein content in populations of the brine shrimp Artemia spp., Mar. Biol. (Berlin), 2000, vol. 137, no. 5, pp. 1005–1016.

    Article  CAS  Google Scholar 

  40. Helland, S., Nejstgaard, J.C., Humlen, R., et al., Effects of season and material food on Calanus finmarchicus reproduction, with emphasis on the free amino acids, Mar. Biol. (Berlin), 2003, vol. 142, no. 6, pp. 1141–1151.

    Article  CAS  Google Scholar 

  41. Helland, S., Terjesen, B., and Berg, L., Free amino acid and protein content in the planktonic copepod Temora longicornis compared to Artemia franciscana,Aquaculture, 2003, vol. 215, nos. 1–4, pp. 213–228.

    Article  CAS  Google Scholar 

  42. Helland, S., Nejstgaard, J.C., Humlen, R., et al., Effects of starvation, season, and diet on the free amino acid and protein content of Calanus finmarchicus females, Mar. Biol. (Berlin), 2003, vol. 143, no. 2, pp. 297–306.

    Article  CAS  Google Scholar 

  43. Hempel, N., Petrick, I., and Behrendt, F., Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production, J. Appl. Phycol., 2012, vol. 24, no. 6, pp. 1407–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kalachova, G.S., Kolmakova, A.A., Gladyshev, M.I., et al., Seasonal dynamics of amino acids in two small Siberian reservoirs dominated by prokaryotic and eukaryotic phytoplankton, Aquat. Ecol., 2004, vol. 38, pp. 3–15.

    Article  CAS  Google Scholar 

  45. Khatoon, H., Banerjee, S., Yusoff, F.M., and Shariff, M., Evaluation of indigenous marine periphytic Amphora, Navicula and Cymbella grown on substrate as feed supplement in Penaeus monodon postlarval hatchery system, Aquacult. Nutr., 2009, vol. 15, pp. 186–193.

    Article  Google Scholar 

  46. Kibria, G., Nugegoda, D., Fairclough, R., et al., Utilization of wastewater-grown zooplankton: nutritional quality of zooplankton and performance of silver perch Bidyanus bidyanus (Mitchell, 1838) (Teraponidae) fed on wasterwater-grown zooplankton, Aquacult. Nutr., 1999, vol. 5, no. 4, pp. 221–227.

    Article  Google Scholar 

  47. Kleppel, G.S., Burkart, C.A., and Houchin, L., Nutrition and the regulation of egg production in the calanoid copepod Acartia tonsa,Limnol. Oceanogr., 1998, vol. 43, no. 5, pp. 1000–1007.

    Article  Google Scholar 

  48. Koch, U., Martin-Creuzburg, D., Grossart, H.-P., and Straile, D., Single dietary amino acids control resting egg production and affect population growth of a key freshwater herbivore, Oecologia, 2011, vol. 167, pp. 981–989.

    Article  PubMed  Google Scholar 

  49. Kolmakova, A.A., Gladyshev, M.I., Kalachova, G.S., et al., Amino acid composition of epilithic biofilm and benthic animals in a large Siberian river, Freshwater Biol., 2013, vol. 58, no. 10, pp. 2180–2195.

    Article  CAS  Google Scholar 

  50. Laloraya, V.K. and Mitra, A.K., Free amino acid composition of some nitrogen fixing blue-green algae in heterocystous and non-heterocystous condition, Experientia, 1970, vol. 26, no. 1, pp. 39–40.

    Article  CAS  PubMed  Google Scholar 

  51. Li, P., Mai, K., Trushenski, J., and Wu, G., New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds, Amino Acids, 2009, vol. 37, pp. 43–53.

    Article  PubMed  CAS  Google Scholar 

  52. Martin-Jezequel, V., Sournia, A., and Birrien, J.-L., A daily study of the diatom spring bloom at Roscoff (France) in 1985. III. Free amino acids composition studied by HPLC analysis, J. Plankton Res., 1992, vol. 14, no. 3, pp. 409–421.

    Article  CAS  Google Scholar 

  53. Misurcova, L., Bunka, F., Ambrozova, J.V., et al., Amino acid composition of algal products and its contribution to RDI, Food Chem., 2014, vol. 151, pp. 120–125.

    Article  CAS  PubMed  Google Scholar 

  54. Mitra, G., Mukhopadhyay, P.K., and Ayyappan, S., Biochemical composition of zooplankton community grown in freshwater earthen ponds: nutritional implication in nursery rearing of fish larvae and early juveniles, Aquaculture, 2007, vol. 272, nos. 1–4, pp. 346–360.

    Article  CAS  Google Scholar 

  55. Natrah, F.M., Yusoff, F.M., Shariff, M., et al., Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value, J. Appl. Phycol., 2007, vol. 19, no. 6, pp. 711–718.

    Article  CAS  Google Scholar 

  56. Ogbonda, K.H., Aminigo, R.E., and Abu, G.O., Influence of temperature and ph on biomass production and protein biosynthesis in a putative Spirulina sp., Bioresour. Technol., 2007, vol. 98, no. 11, pp. 2207–2211.

    Article  CAS  PubMed  Google Scholar 

  57. Ovie, S.I. and Ovie, S.O., Moisture, protein, and amino acid contents of three freshwater zooplankton used as feed for aquacultured larvae and postlarvae, Isr. J. Aquacult., 2006, vol. 58, no. 1, pp. 29–33.

    Google Scholar 

  58. Rosa, R. and Nunes, M.L., Seasonal patterns of nucleic acid concentrations and amino acid profiles of Parapenaeus longirostris (Crustacea, Decapoda): relation to growth and nutritional condition, Hydrobiologia, 2005, vol. 537, pp. 207–216.

    Article  CAS  Google Scholar 

  59. Samek, D., Misurcova, L., Machu, L., et al., Influencing of amino acid composition of green freshwater algae and cyanobacterium by methods of cultivation, Turk. J. Biochem., 2013, vol. 38, no. 4, pp. 360–368.

    Article  CAS  Google Scholar 

  60. Shim, Y.-S., Yoon, W.-J., Ha, J., et al., Method validation of 16 types of structural amino acids using an automated amino acid analyzer, Food Sci. Biotechnol., 2013, vol. 22, no. 6, pp. 1567–1571.

    Article  CAS  Google Scholar 

  61. Sorimachi, K., Evolutionary changes reflected by the cellular amino acid composition, Amino Acids, 1999, vol. 17, pp. 207–226.

    Article  CAS  PubMed  Google Scholar 

  62. Sorimachi, K., The classification of various organisms according to the free amino acid composition change as the result of biological evolution, Amino Acids, 2002, vol. 22, pp. 55–69.

    Article  CAS  PubMed  Google Scholar 

  63. Spackman, D.H., Stein, W.H., and Moore, S., Automatic recording apparatus for use in chromatography of amino acids, Anal. Chem., 1958, vol. 30, no. 7, pp. 1190–1206.

    Article  CAS  Google Scholar 

  64. Sterner, R.W. and Hessen, D.O., Algal nutrient limitation and the nutrition of aquatic herbivores, Ann. Rev. Ecol. System, 1994, vol. 25, pp. 1–29.

    Article  Google Scholar 

  65. Tibbetts, S.M., Milley, J.E., and Lall, S.P., Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors, J. Appl. Phycol., 2015, vol. 27, pp. 1109–1119.

    Article  CAS  Google Scholar 

  66. Wacker, A. and Martin-Creuzburg, D., Biochemical nutrient requirements of the rotifer Brachionus calyciflorus: co-limitation by sterols and amino acids, Funct. Ecol., 2012, vol. 26, no. 5, pp. 1135–1143.

    Article  Google Scholar 

  67. Wang, S.-K., Hu, Y.-R., Wang, F., et al., Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors, Bioresour. Technol., 2014, vol. 156, pp. 117–122.

    Article  CAS  PubMed  Google Scholar 

  68. Williams, A.E. and Burris, R.H., Nitrogen fixation by blue-green algae and their nitrogenous composition, Am. J. Bot., 1952, vol. 39, no. 5, pp. 340–342.

    Article  CAS  Google Scholar 

  69. Wu, G., Amino acids: metabolism, functions, and nutrition, Amino Acids, 2009, vol. 37, pp. 1–17.

    Article  PubMed  CAS  Google Scholar 

  70. Ventura, M. and Catalan, J., Variability in amino acid composition of alpine crustacean zooplankton and its relationship with nitrogen-15 fractionation, J. Plankton Res., 2010, vol. 32, no. 11, pp. 1583–1597.

    Article  CAS  Google Scholar 

  71. Vidoudez, C. and Pohnert, G., Comparative metabolomies of the diatom Skeletonema marinoi in different growth phases, Metabolomics, 2012, vol. 8, no. 4, pp. 654–669.

    Article  CAS  Google Scholar 

  72. Yancey, P.H., Clark, M.E., Hand, S.C., et al., Living with water stress: evolution of osmolyte systems, Science, 1982, vol. 217, pp. 1214–1222.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

State task of the basic research program of the Russian Federation, topic number VI.51.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kolmakova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolmakova, A.A., Kolmakov, V.I. Amino Acid Composition of Green Microalgae and Diatoms, Cyanobacteria, and Zooplankton (Review). Inland Water Biol 12, 452–461 (2019). https://doi.org/10.1134/S1995082919040060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082919040060

Keywords:

Navigation