Skip to main content
Log in

Study of melting processes in semicrystalline polymers using a combination of ultrafast chip calorimetry and nanofocus synchrotron X-ray diffraction

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This work is devoted to the development and application of a new experimental method that combines in situ ultrafast calorimetry on a chip with nanofocus synchrotron X-ray diffraction. In the present work, this method is used to study the melting mechanisms of samples of semicrystalline polymers with the mass of a few tens of nanograms. Such studies are relevant when working with materials that are characterized by complex phase behavior, for example, prone to transitions into metastable states or demonstrating fast processes of structural adjustment during thermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gaisford, Eur. Pharmaceut. Rev. 4, 70 (2007).

    Google Scholar 

  2. C. Rustichelli et al., Thermochim. Acta 374, 85 (2001).

    Article  Google Scholar 

  3. K. Kawakami et al., Thermochim. Acta 427, 93 (2005).

    Article  Google Scholar 

  4. E. V. Boldyreva et al., J. Therm. Anal. Calorim. 77, 607 (2004).

    Article  Google Scholar 

  5. S. Gaisford, Eur. Pharmaceut. Rev. 2, 50 (2007).

    Google Scholar 

  6. W. McConnell et al., J. Ind. Hygiene Toxicol. 28, 76 (1946).

    Google Scholar 

  7. B. Dionne et al., J. Energet. Mater. 4, 447 (1986).

    Article  Google Scholar 

  8. J. Yinon, Handb. Anal. Sep. 6, 823 (2008).

    Article  Google Scholar 

  9. L. H. Allen et al., Appl. Phys. Lett. 64, 1003 (1994).

    Article  Google Scholar 

  10. S. Lai et al., Appl. Phys. Lett. 65, 1229 (1995).

    Article  Google Scholar 

  11. S. Lai et al., Microscale Thermophys. Eng. 2, 11 (1998).

    Article  Google Scholar 

  12. A. T. Kwan, J. Polym. Sci. B 39, 1237 (2001).

    Article  Google Scholar 

  13. E. A. Olson et al., J. Microelectromech. Syst. 12, 355 (2003).

    Article  Google Scholar 

  14. M. Yu. Efremov et al., Thermochim. Acta 403, 37 (2003).

    Article  Google Scholar 

  15. W. A. Donald et al., Proc. Natl. Acad. Sci. 105, 18102 (2008).

    Article  Google Scholar 

  16. M. D. Grapes et al., APL Mater. 2, 116102 (2014).

    Article  Google Scholar 

  17. K. C. Xiao et al., J. Appl. Phys. 113, 243501 (2013).

    Article  Google Scholar 

  18. J. M. Gregoire et al., Appl. Phys. Lett. 102, 201902 (2013).

    Article  Google Scholar 

  19. J. M. Gregoirea et al., Scripta Mater. 66, 178 (2012).

    Article  Google Scholar 

  20. M. van Drongelen, et al., Thermochim. Acta 563, 33 (2013).

    Article  Google Scholar 

  21. N. Piazzon et al., J. Phys. Chem. Solids 71, 114 (2010).

    Article  Google Scholar 

  22. D. Spitzer et al., Proc. Eng. 87, 740 (2014).

    Article  Google Scholar 

  23. M. Rosenthal et al., J. Synchrotr. Rad. 21, 223 (2014).

    Article  Google Scholar 

  24. C. Riekel et al., Langmuir 31, 529 (2015).

    Article  Google Scholar 

  25. M. Rosenthal et al., Macromolecules 47, 8295 (2014).

    Article  Google Scholar 

  26. M. Rosenthal et al., Macromolecules 45, 7454 (2012).

    Article  Google Scholar 

  27. J. D. Hoffman et al., J. Res. Nat. Bureau Standards, Sect. A: Phys. Chem. 66, 13 (1962).

    Article  Google Scholar 

  28. Y. Lee et al., Macromolecules 20, 1336 (1987).

    Article  Google Scholar 

  29. P. G. Holdsworth et al., Polymer 12, 195 (1971).

    Article  Google Scholar 

  30. D. A. Ivanov et al., Macromolecules 41, 9224 (2008).

    Article  Google Scholar 

  31. D. A. Ivanov et al., Eur. Phys. J. E 13, 363 (2004).

    Article  Google Scholar 

  32. D. A. Ivanov et al., Macromolecules 34, 8944 (2001).

    Article  Google Scholar 

  33. D. A. Ivanov et al., Polymer 41, 3719 (2000).

    Article  Google Scholar 

  34. D. A. Ivanov et al., Polymer 40, 5899 (1999).

    Article  Google Scholar 

  35. P. Cebe et al., J. Polym. Sci., Part B 43, 629 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Ivanov.

Additional information

Original Russian Text © A.P. Melnikov, M. Rosenthal, M. Burghammer, D.V. Anokhin, D.A. Ivanov, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, A.P., Rosenthal, M., Burghammer, M. et al. Study of melting processes in semicrystalline polymers using a combination of ultrafast chip calorimetry and nanofocus synchrotron X-ray diffraction. Nanotechnol Russia 11, 305–311 (2016). https://doi.org/10.1134/S1995078016030113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016030113

Navigation