Skip to main content
Log in

Grain boundary and interfacial sliding in Cu/Nb nanolaminates

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The mechanical properties of two types of laminated Cu/Nb composites (with layer thicknesses in the range of 10–12 mm and 10–18 nm, respectively) are investigated in the temperature range of 773–1073 K. The possibility of the manifestation of grain boundary and interfacial sliding along the internal interfaces of the studied materials is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Misra, J. P. Hirth, and R. G. Hoagland, “Lengthscale-dependent deformation mechanisms in incoherent metallic multilayered composites,” Acta Mater. 53, 4817–4824 (2005).

    Article  Google Scholar 

  2. A. Misra, M. J. Demkowicz, J. Wang, and R. G. Hoagland, “The multiscale modeling of plastic deformation in metallic nanolayered composites,” J. Org. Mater. 60(4), 39–42 (2008).

    Google Scholar 

  3. J. P. Hirth and J. Lots, Theory of Dislocations (McGraw-Hill, New York, 1968).

    Google Scholar 

  4. E. M. Terence, C. L. Yong, J. G. J. Alfred, N. Michael, and K. Harriet, “Structure and mechanical properties of copper/niobium multilayers,” J. Am. Ceram. Soc. 80(7), 1673–1676 (1997).

    Google Scholar 

  5. A. Misra, X. Zhang, D. Hammon, and R. G. Hoagland, “Work hardening in rolled nanolayered metallic composites,” Acta Mater., No. 53, 221–226 (2005).

    Google Scholar 

  6. M. I. Karpov, V. I. Vnukov, K. G. Volkov, N. V. Medved’, I. I. Khodos, and G. E. Abrosimova, “Vacuum rolling as a mean for producing multilayer composites with nanometric layers,” Materialovedenie, No. 1, 48–53 (2004).

    Google Scholar 

  7. N. Mara, A. Sergueeva, A. Misra, and A.K. Mukherjee, “Structure and high-temperature mechanical behavior relationship in nano-scaled multilayered materials,” Scripta Mater., No. 50, 803–806 (2004).

    Google Scholar 

  8. N. A. Mara, T. Tamayo, A. V. Sergueeva, X. Zhang, A. Misra, and A. K. Mukherjee, “The effect of decreasing layer thickness on the high temperature mechanical behavior of Cu/Nb nanoscale multilayers,” Thin Solid Films, No. 515, 3241–3245 (2007).

    Google Scholar 

  9. I. I. Novikov and V. K. Portnoi, Superplasticity of Alloys with Superthin Grain (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  10. R. G. Hoagland, R. J. Kurtz, and C. H. Henager, Jr., “Slip resistance of interfaces and the strength of metallic multilayer composites,” Scripta Mater., No. 50, 775–779 (2004).

    Google Scholar 

  11. J. Wang, R. G. Hoagland, J. P. Hirth, and A. Misra, “Atomic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces,” Acta Mater., No. 56, 3109–3119 (2008).

    Google Scholar 

  12. A. G. Lipnitskii, I. V. Nelasov, D. N. Klimenko, D. N. Mapadudin, and Yu. P. Kolobov, “Moleculardynamical simulation of multilayered Cu/Nb composite,” Materialovedenie, No. 6, 7–10 (2009).

    Google Scholar 

  13. A. G. Lipnitskii, Yu. R. Kolobov, D. N. Klimenko, and D. N. Maradudin, “Moleular-dynamical simulation of Cu/Nb nanomaterials plastic deformation,” Izv. Vyssh. Uchebn. Zaved. Fiz., No. 3/2, 154–157 (2010).

    Google Scholar 

  14. N. Li, N.A. Mara, J. Wang, P. Dickerson, J. Y. Huang, and A. Misra, “Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers,” Scripta Mater., No. 67, 479–482 (2012).

    Google Scholar 

  15. M. I. Karpov, V. P. Korzhov, V. I. Vnukov, K. V. Volkov, and N. V. Medved’, “Superconducting critical current in Cu-Nb nanolaminate,” Materialovedenie, No. 1, 43–47 (2005).

    Google Scholar 

  16. M. J. Demkowicz, R. G. Hoagland, and J. P. Hirth, “Interface structure and radiation damage resistance in Cu/Nb multilayer nanocomposites,” Phys. Rev. Lett., No. 100 (2008).

    Google Scholar 

  17. A. Misra, M. J. Demkowicz, X. Zhang, and R. G. Hoagland, “The radiation damage tolerance of ultra-high strength nanolayered composites,” J. Org. Mater. 59(9), 62–65 (2007).

    Google Scholar 

  18. M. I. Karpov, V. I. Vnukov, K. G. Volkov, N. V. Medved’, I. I. Khodos, and G. E. Abrosimova, “Structure variation under Cu-Nb multilayered composite with nanometer layers annealing,” Materialovedenie, No. 2, 47–52 (2004).

    Google Scholar 

  19. Yu. R. Kolobov, A. G. Lipnitskii, M. B. Ivanov, and E. V. Golosov, “How diffusion-controlled processes influence on to metallic nanomaterials structure and properties formation,” Kompozity Nanostrukt., No. 2, 5–24 (2009).

    Google Scholar 

  20. Yu. R. Kolobov, Diffusion-Controlled Processes at Grain Boundaries and Metallic Polycrystals Plasticity (Nauka, Novosibirsk, 1998) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Klimenko.

Additional information

Original Russian Text © D.N. Klimenko, Yu.R. Kolobov, M.I. Karpov, V.P. Korzhov, E.V. Golosov, I.V. Ratochka, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimenko, D.N., Kolobov, Y.R., Karpov, M.I. et al. Grain boundary and interfacial sliding in Cu/Nb nanolaminates. Nanotechnol Russia 8, 783–788 (2013). https://doi.org/10.1134/S1995078013060098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013060098

Keywords

Navigation