Skip to main content
Log in

Experimental Study of the Radiation Characteristics of a CO2–N2 Mixture Behind the Front of a Strong Shock Wave

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The results of measuring the radiation characteristics of the shock-heated mixture of CO2–N2 simulating the atmosphere of Mars are presented. Experiments carried out on a modified double-diaphragm shock tube (DDST-M) of the Institute of Mechanics, Moscow State University for two combinations of initial pressures and velocities of the shock wave: 5.4–6.8 km/s at a pressure of 1.0 Torr and 5.3–8.1 km/s at a pressure of 0.3 Torr. Panoramic radiation spectra in the wavelength range of 200 to 850 nm (ultraviolet and visible spectral ranges) and the temporal dependence of the radiation intensity of one of the most intense emission bands were obtained. The measurement data are compared with the experimental data of other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Reyner, Galaxies 9 (15) (2021).

  2. D. Bose, J. H. Grinstead, D. W. Bogdanoff, and M. J. Wright, in Proceedings of the 3rd International Workshop on Radiation of High Temperature Gases in Atmospheric Entry (ESA, Heraklion, 2008), No. ESA SP-667.

  3. P. Reyner, Prog. Aerospace Sci. 85, 1 (2016).

    Article  Google Scholar 

  4. S. Gu and H. Olivier, Prog. Aerospace Sci. 113, 100607 (2020).

    Article  Google Scholar 

  5. J. Y. Grinstead, M. J. Wright, D. W. Bogdanoff, and G. A. Allen, J. Thermophys. Heat Transfer 23, 249 (2009).

    Article  CAS  Google Scholar 

  6. B. A. Cruden, D. Prabhu, R. Martinez, et al., AIAA Paper No. 2010-4508 (2010).

  7. B. A. Cruden, D. Prabhu, and R. Martinez, J. Spacecr. Rockets 49, 1069 (2012).

    Article  CAS  Google Scholar 

  8. A. M. Brandis, C. O. Johnston, B. A. Cruden, et al., AIAA Paper No. 2013-1055 (2013).

  9. A. M. Brandis, C. O. Johnston, B. A. Cruden, et al., J. Quant. Spectrosc. Radiat. Transfer 121, 91 (2013).

    Article  CAS  Google Scholar 

  10. V. A. Gorelov, A. Yu. Kireev, and S. V. Shilenkov, J. Appl. Mech. Tech. Phys. 46, 160 (2005).

    Article  CAS  Google Scholar 

  11. H. Takayanagi, A. Lemal, S. Nomura, and K. Fujita, J. Thermophys. Heat Transfer 32, 483 (2018).

    Article  CAS  Google Scholar 

  12. E. M. Anokhin, T. Yu. Ivanova, N. N. Kudryavtsev, and A. Yu. Starikovskii, High Temp. 45, 733 (2007).

    Article  CAS  Google Scholar 

  13. A. S. Dikalyuk, S. T. Surzhikov, P. V. Kozlov, et al., AIAA Paper No. 2012-0795 (2012).

  14. A. S. Dikalyuk, S. T. Surzhikov, P. V. Kozlov, et al., AIAA Paper No. 2013-2505 (2013).

  15. N. G. Bykova, I. E. Zabelinskii, L. B. Ibragimova, P. V. Kozlov, S. V. Stovbun, A. M. Tereza, and O. P. Shatalov, Russ. J. Phys. Chem. B 12, 108 (2018).

    Article  CAS  Google Scholar 

  16. V. Yu. Levashov, P. V. Kozlov, N. G. Bykova, and I. E. Zabelinskii, Russ. J. Phys. Chem. B 15, 56 (2021).

    Article  CAS  Google Scholar 

  17. S. Surzhikov and P. Kozlov, in Proceedings of the 55th AIAA Aerospace Sci. Meeting, AIAA Sci. Tech. Forum (AIAA, Grapevine, TX, 2017), Vol. 157, p. 1. https://doi.org/10.2514/6.2017-0157

  18. S. D. McGuirea, A. C. Tibère-Inglessea, P. B. Mariotto, et al., J. Quant. Spectrosc. Radiat. Transfer 245, 106855 (2020).

    Article  Google Scholar 

  19. M. A. Ridenti and J. Amorim, Plasma Chem. Plasma Process. 38, 311 (2018).

    Article  CAS  Google Scholar 

  20. E. Carbone, F. D’Isa, A. Hecimovic, and U. Fantz, Plasma Sources Sci. Technol. 29, 055003 (2020).

    Article  CAS  Google Scholar 

  21. G. N. Zalogin, P. V. Kozlov, L. A. Kuznetsova, S. A. Losev, V. N. Makarov, Yu. V. Romanenko, and S. T. Surzhikov, Tech. Phys. 46, 654 (2001).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, grant no. 20-08-00343, and as part of a state assignment of the Ministry of Science and Higher Education of the Russian Federation “Experimental and theoretical study of kinetic processes in gases” (state registration number AAAA-A19-119012990112-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Levashov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, P.V., Zabelinsky, I.E., Bykova, N.G. et al. Experimental Study of the Radiation Characteristics of a CO2–N2 Mixture Behind the Front of a Strong Shock Wave. Russ. J. Phys. Chem. B 15, 989–994 (2021). https://doi.org/10.1134/S1990793121060208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121060208

Keywords:

Navigation