Skip to main content
Log in

Ionospheric Effects of the Sudden Stratospheric Warming in 2009: Results of Simulation with the First Version of the EAGLE Model

Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2018

This article has been updated

Abstract

In this paper, we discuss perturbations in neutral temperature, total electron content (TEC), and critical frequency of the maximum of the F2 layer (foF2) during the sudden stratospheric warming in January 2009. The calculations were performed using the first version of the EAGLE (Entire Atmosphere Global Model), which is a combination of the models of the low–middle atmosphere (HAMMONIA) and the upper atmosphere (GSM TIP). The EAGLE reproduces observed stratospheric warming and related mesospheric cooling in the northern polar cap in January 2009. At thermospheric altitudes, the neutral temperature perturbations have a quasi-wave character with a wavelength of ∼40 km in the vertical direction. Our results indicate that the HAMMONIA model should be used in the EAGLE instead of the GSM TIP model for the neutral temperature calculations in the altitude region from 80 to 120 km. It is shown that the obtained model foF2 and TEC perturbations are mainly related to seasonal variations. The most-pronounced perturbations in the ionospheric electron density due to stratospheric warming are formed near the equator and are basically negative. Our analysis of the neutral temperature and electron density perturbations made it possible to conclude that the dependence of ionospheric parameters on seasonal changes in solar zenith angle is stronger than for the thermosphere parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 28 February 2019

    The author’s name should read <Emphasis Type="Italic">H. Schmidt</Emphasis> instead of Kh. Shmidt

References

  1. A. Charlton and L. Polvani, J. Clim. 20, 449 (2007).

    Article  Google Scholar 

  2. B. G. Shpynev, D. Pancheva, P. Mukhtarov, et al., Sovrem. Probl. Distants. Zondir. Zemli Kosmosa 10, 153 (2013).

    Google Scholar 

  3. G. L. Manney, Z. D. Lawrence, M. L. Santee, et al., Atmos. Chem. Phys. 15, 4973 (2015). doi 10.5194/acp-15-5381-2015

    Article  Google Scholar 

  4. M. R. Schoeberl, Rev. Geophys. 16, 521 (1978).

    Article  Google Scholar 

  5. K. Labitzke, Mon. Weather Rev. 109, 983 (1981).

    Article  Google Scholar 

  6. E. S. Kazimirovsky and V. D. Kokourov, J. Geomagn. Geoelectr. 43, 551 (1991).

    Article  Google Scholar 

  7. J. L. Chau, L. P. Goncharenko, B. G. Fejer, and H.-L. Liu, Space Sci. Rev. 168, 385 (2012). doi 10.1007/s11214-011-9797-5

    Article  CAS  Google Scholar 

  8. L. Goncharenko and S.-R. Zhang, Geophys. Rev. Lett. 35, L21103 (2008). doi 10.1029/2008GL035684

    Google Scholar 

  9. J. L. Chau, B. G. Fejer, and L. P. Goncharenko, Geophys. Rev. Lett. 36, L05101 (2009). doi 10.1029/2008GL036785

    Google Scholar 

  10. L. P. Goncharenko, A. J. Coster, J. L. Chau, and C. E. Vallandares, J. Geophys. Res. 115, A00G07 (2010). doi 10.1029/2010JA015400

    Google Scholar 

  11. L. P. Goncharenko, J. L. Chau, H.-L. Liu, and A. J. Coster, Geophys. Rev. Lett. 37, L10101 (2010). doi 10.1029/2010GL043125

    Google Scholar 

  12. A. S. Polyakova, M. A. Chernigovskaya, and N. P. Perevalova, J. Atmos. Sol.-Terr. Phys. 120, 15 (2014). doi 10.1016/j.jastp.2014.08.011

    Article  CAS  Google Scholar 

  13. J. M. Forbes, S. E. Palo, and X. Zhang, J. Atmos. Sol.-Terr. Phys. 62, 685 (2000).

    Article  CAS  Google Scholar 

  14. T. Fuller-Rowell, F. Wu, R. Akmaev, et al., J. Geophys. Res. 115, A00G08 (2010). doi 10.1029/2010JA015524

    Google Scholar 

  15. H.-L. Liu, W. Wang, A. D. Richmond, and R. G. Roble, J. Geophys. Res. 115, A00G01 (2010). doi 10.1029/2009JA015188

    Google Scholar 

  16. H. Jin, Y. Miyoshi, D. Pancheva, et al., J. Geophys. Res. 117, A10323 (2012). doi 10.1029/2012JA017650

    Google Scholar 

  17. Y. N. Korenkov, V. V. Klimenko, M. V. Klimenko, et al., J. Geophys. Res. 117, A10309 (2012). doi 10.1029/2012JA018018

    Google Scholar 

  18. M. V. Klimenko, V. V. Klimenko, F. S. Bessarab, et al., J. Geophys. Res. 120, 7873 (2015). doi 10.1002/2014JA020861

    Article  Google Scholar 

  19. M. V. Klimenko, V. V. Klimenko, F. S. Bessarab, Yu. N. Korenkov, E. V. Rozanov, T. Reddmann, I. E. Zakharenkova, and M. V. Tolstikov, Russ. J. Phys. Chem. B 10, 109 (2016).

    Article  CAS  Google Scholar 

  20. H.-L. Liu, V. A. Yudin, and R. G. Roble, Geophys. Rev. Lett. 40, 665 (2013). doi 10.1002/grl.50125

    Article  Google Scholar 

  21. T. Fuller-Rowell, H. Wang, R. Akmaev, et al., Geophys. Rev. Lett. 38, L13102 (2011). doi 10.1029/2011GL047732

    Google Scholar 

  22. T.-W. Fang, T. Fuller-Rowell, R. Akmaev, et al., J. Geophys. Res. 117, A03324 (2012). doi 10.1029/2011JA017348

    Google Scholar 

  23. N. Pedatella, T.-W. Fang, H. Jin, et al., J. Geophys. Res. 121, 7204 (2016).

    Article  Google Scholar 

  24. E. Roeckner, R. Brokopf, M. Esch, et al., J. Clim. 19, 3771 (2006). doi 10.1175/JCLI3824.1

    Article  Google Scholar 

  25. D. E. Kinnison, G. P. Brasseur, S. Walters, et al., J. Geophys. Res. 112, D20302 (2007). doi 10.1029/2006JD007879

    Google Scholar 

  26. H. Schmidt, G. P. Brasseur, M. Charron, et al., J. Clim. 19, 3903 (2006).

    Article  Google Scholar 

  27. K. Meraner and H. Schmidt, J. Geophys. Res. 121, 2556 (2016).

    CAS  Google Scholar 

  28. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Pure Appl. Geophys. 127, 219 (1988).

    Article  CAS  Google Scholar 

  29. Yu. N. Korenkov, V. V. Klimenko, M. Förster, et al., J. Geophys. Res. 103 (A7), 14697 (1998). doi 10.1029/98JA00210

    Google Scholar 

  30. A. A. Namgaladze, Yu. N. Koren’kov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).

    Google Scholar 

  31. M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 457 (2006).

    Article  Google Scholar 

  32. M. Hernández-Pajares, J. M. Juan, J. Sanz, et al., J. Geodesy. 83, 263 (2009). doi 10.1007/s00190-008-0266-1

    Article  Google Scholar 

  33. N. V. Chirik, M. V. Klimenko, V. V. Klimenko, A. T. Karpachev, K. G. Ratovskii and N. A. Koren’kova, Russ. J. Phys. Chem. B 11, 1038 (2017).

    Article  CAS  Google Scholar 

  34. H. Fischer, M. Birk, C. Blom, et al., Atmos. Chem. Phys. 8, 2151 (2008). doi 10.5194/acp-8-2151-2008

    Article  CAS  Google Scholar 

  35. B. Funke, M. López-Puertas, M. García-Comas, et al., J. Quant. Spectrosc. Radiat. Transfer 113, 1771 (2012). doi 10.1016/j.jqsrt.2012.05.001

    Article  CAS  Google Scholar 

  36. M. García-Comas, B. Funke, A. Gardini, et al., Atmos. Meas. Tech. 7, 3633 (2014). doi 10.5194/amt-7-3633-2014

    Article  Google Scholar 

  37. D. Bermejo-Pantaleón, B. Funke, M. López-Puertas, et al., J. Geophys. Res. 116, A10313 (2011). doi 10.1029/2011JA016752

    Google Scholar 

  38. B. Funke, M. López-Puertas, D. Bermejo-Pantaleón, et al., Geophys. Rev. Lett. 37, L13803 (2010). doi 10.1029/2010GL043619

    Google Scholar 

  39. G. L. Manney, M. J. Schwartz, K. Kruger, et al., Geophys. Rev. Lett. 36, L12815 (2009). doi 10.1029/2009GL038586

    Google Scholar 

  40. X. Yue, W. S. Schreiner, J. Lei, et al., J. Geophys. Res. 115, A00G09 (2010). doi 10.1029/2010JA015466

    Google Scholar 

  41. D. Pancheva and P. Mukhtarov, J. Atmos. Sol.-Terr. Phys. 73, 1697 (2011). doi 10.1016/j.jastp.2011.03.006

    Article  Google Scholar 

  42. F. S. Bessarab, Yu. N. Korenkov, M. V. Klimenko, et al., J. Atmos. Sol.-Terr. Phys. 90–91, 77 (2012). doi 10.1016/j.jastp.2012.09.005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Koren’kov.

Additional information

Original Russian Text © M.V. Klimenko, F.S. Bessarab, T.V. Sukhodolov, V.V. Klimenko, Yu.N. Koren’kov, I.E. Zakharenkova, N.V. Chirik, P.A. Vasil’ev, D.V. Kulyamin, Kh. Shmidt, B. Funke, E.V. Rozanov, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 7, pp. 70–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, M.V., Bessarab, F.S., Sukhodolov, T.V. et al. Ionospheric Effects of the Sudden Stratospheric Warming in 2009: Results of Simulation with the First Version of the EAGLE Model. Russ. J. Phys. Chem. B 12, 760–770 (2018). https://doi.org/10.1134/S1990793118040103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118040103

Keywords

Navigation