Skip to main content
Log in

Murine embryonic stem cells as a model for human embryonic stem-cell research

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Over the last several decades, murine embryonic stem cells (mESCs) have been used as a model for human embryonic stem cell (hESC) research. The relevance of this approach has not yet been proven. There is a great deal of evidence that is indicative of substantial differences between these two cell types. An analysis of the literature shows that the differences concern ESC proliferation, self-renewal, and differentiation. Consequently, mESC may be considered as a model object for hESC studies only for some aspects of their biology. The alternative model objects, such as primate ESC, are also discussed briefly in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ICM:

inner cell mass

ESC:

embryonic stem cells

mESC:

murine embryonic stem cells

hESC:

human embryonic stem cells

References

  • Aberdam, A., Barak, E., Rouleau, M., de la Forest, S., Berrih-Aknin, S., Suter, D.M., Krause, K.H., Amit, M., Itskovitz-Eldor, J., and Aberdam, D., A Pure Population of Ectodermal Cells Derived from Human Embryonic Stem Cells, Stem Cells, 2008, vol. 26, pp. 440–444.

    Article  PubMed  CAS  Google Scholar 

  • Adams, I.R. and McLaren, A., Identification and Characterization of mRif1: A Mouse Telomere-Associated Protein Highly Expressed in Germ Cells and Embryo-Derived Pluripotent Stem Cells, Dev. Dyn., 2004, vol. 229, pp. 733–744.

    Article  PubMed  CAS  Google Scholar 

  • Aflatoonian, B. and Moore, H., Germ Cells from Mouse and Human Embryonic Stem Cells, Reproduction, 2006, vol. 132, pp. 699–707.

    Article  PubMed  CAS  Google Scholar 

  • Amit, M., Carpenter, M.K., Inokuma, M.S., Chiu, C.P., Harris, C.P., Waknitz, M.A., Itskovitz-Eldor, J., and Thomson, J.A., Clonally Derived Human Embryonic Stem Cell Lines Maintain Pluripotency and Proliferative Potential for Prolonged Periods of Culture, Dev. Biol., 2000, vol. 227, pp. 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Amit, M., Shariki, C., Marguletz, V., and Itskovitz-Eldor, J., Feeder-Layer and Serum-Free Culture of Human Embryonic Stem Cells, Biol. Reprod., 2004, vol. 70, pp. 837–845.

    Article  PubMed  CAS  Google Scholar 

  • Andressen, C., Stoecker, E., Klinz, F.J., Lenka, N., Hescheler, J., Fleischmann, B., Arnhold, S., and Addicks, K., Nestin-Specific Green Fluorescent Protein Expression in Embryonic Stem Cell-Derived Neural Precursor Cells Used for Transplantation, Stem Cells, 2001, vol. 19, pp. 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Angelov, D.N., Arnhold, S., Andressen, C., Grabsch, H., Puschmann, M., Hescheler, J., and Addicks, K., Temporospatial Relationships between Macroglia and Microglia During in Vitro Differentiation of Murine Stem Cells, Dev. Neurosci., 1998, vol. 20, pp. 42–51.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, L., Lako, M., Lincoln, J., Cairns, P.M., and Hole, N., MTert Expression Correlates with Telomerase Activity during the Differentiation of Murine Embryonic Stem Cells, Mech. Dev., 2000, vol. 97, pp. 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K.L., and Tzukerman, M., Insulin Production by Human Embryonic Stem Cells, Diabetes, 2001, vol. 50, pp. 1691–1697.

    Article  PubMed  CAS  Google Scholar 

  • Austin, T.W., Solar, G.P., Ziegler, F.C., Liem, L., and Matthews, W., A Role for the Wnt Gene Family in Hematopoiesis: Expansion of Multilineage Progenitor Cells, Blood, 1997, vol. 89, pp. 3624–3635.

    PubMed  CAS  Google Scholar 

  • Avery, S., Inniss, K., and Moore, H., The Regulation of Self-Renewal in Human Embryonic Stem Cells, Stem Cells and Development, 2006, vol. 15, pp. 729–740.

    Article  PubMed  CAS  Google Scholar 

  • Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R., Multipotent Cell Lineages in Early Mouse Development Depend on SOX2 Function, Genes Dev., 2003, vol. 17, pp. 126–140.

    Article  PubMed  CAS  Google Scholar 

  • Bagutti, C., Wobus, A.M., Fassler, R., and Watt, F.M., Differentiation of Embryonic Stem Cells into Keratinocytes: Comparison of Wildtype and Beta 1 Integrin-Deficient Cells, Dev. Biol., 1996, vol. 179, pp. 184–196.

    Article  PubMed  CAS  Google Scholar 

  • Bain, G., Kitchens, D., Yao, M., Huettner, J.E., and Gottlieb, D.I., Embryonic Stem Cells Express Neuronal Properties in Vitro, Dev. Biol., 1995, vol. 168, pp. 342–357.

    Article  PubMed  CAS  Google Scholar 

  • Billon, N., Jolicoeur, C., Tokumoto, Y., Vennstrom, B., and Raff, M., Normal Timing of Oligodendrocyte Development Depends on Thyroid Hormone Receptor Alpha 1 (TRα1), EMBO J., 2002, vol. 21, pp. 6452–6460.

    Article  PubMed  CAS  Google Scholar 

  • Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St Onge, L., and Wobus, A.M. Expression of Pax4 in Embryonic Stem Cells Promotes Differentiation of Nestin-Positive Progenitor and Insulinproducing Cells, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 998–1003.

    Article  PubMed  CAS  Google Scholar 

  • Boeuf, H., Hauss, C., Graeve, F.D., Baran, N., and Kedinger, C., Leukemia Inhibitory Factor-Dependent Transcriptional Activation in Embryonic Stem Cells, J. Cell Biol., 1997, vol. 138, pp. 1207–1217.

    Article  PubMed  CAS  Google Scholar 

  • Boiani, M. and Scholer, H.R., Regulatory Networks in Embryo-Derived Pluripotent Stem Cells, Mol. Cell Biol., 2005, vol. 6, pp. 872–884.

    CAS  Google Scholar 

  • Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., and Jenner, R.G., Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells, Cell, 2005, vol. 122, pp. 947–956.

    Article  PubMed  CAS  Google Scholar 

  • Brandenberger, R., Wei, H., Zhang, S., Lei, S., Murage, J., Fisk, G.J., Li, Y., Xu, C., Fang, R., Guegler, K., Rao, M.S., Mandalam, R., Lebkowski, J., and Stanton, L.W., Transcriptome Characterization Elucidates Signaling Networks that Control Human ES Cell Growth and Differentiation, Nature Biotechnol., 2004, vol. 22, pp. 707–716.

    Article  Google Scholar 

  • Brenin, D., Look, J., Bader, M., Hubner, N., Levan, G., and Iannaccone, P., Rat Embryonic Stem Cells: A Progress Report, Transplant. Proc., 1997, vol. 29, pp. 1761–1765.

    Article  PubMed  CAS  Google Scholar 

  • Brons, I.G., Smithers, L.E., Trotter, M.W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S.M., Howlett, S.K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R.A., and Vallier, L., Derivation of Pluripotent Epiblast Stem Cells from Mammalian Embryos, Nature, 2007, vol. 448, pp. 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Brook, F.A. and Gardner, R.L., The Origin and Efficient Derivation of Embryonic Stem Cells in the Mouse, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 5709–5712.

    Article  PubMed  CAS  Google Scholar 

  • Brustle, O., Jones, K.N., Learish, R.D., Karram, K., Choudhary, K., Wiestler, O.D., Duncan, I.D., and McKay, R.D., Embryonic Stem Cell Derived Glial Precursors: A Source of Myelinating Transplants, Science, 1999, vol. 285, pp. 754–756.

    Article  PubMed  CAS  Google Scholar 

  • Buehr, M. and Smith, A., Genesis of Embryonic Stem Cells, Phil. Trans. R. Soc. Lond., 2003, vol. 358, pp. 1397–1402.

    Article  CAS  Google Scholar 

  • Buehr, M., Nichols, J., Stenhouse, F., Mountford, P., Greenhalgh, C.J., Kantachuversiri, S., Brooker, G., Mullins, J.J., Smith, A.G., Rapid Loss of Oct-4 and Pluripotency in Cultured Rodent Blastocysts and Derivative Cell Lines, Biol. Reprod., 2002, vol. 68, pp. 222–229.

    Article  CAS  Google Scholar 

  • Burdon, T., Chambers, I., Stracey, C., Niwa, H., and Smith, A., Signaling Mechanisms Regulating Self-Renewal and Differentiation of Pluripotent Embryonic Stem Cells, Cells Tissues Organs, 1999a, vol. 165, pp. 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Burdon, T., Stracey, C., Chambers, I., Nichols, J., and Smith, A., Suppression of SHP-2 and ERK Signalling Promotes Self-Renewal of Mouse Embryonic Stem Cells, Dev. Biol., 1999b, vol. 210, pp. 30–43.

    Article  PubMed  CAS  Google Scholar 

  • Buttery, L.D., Bourne, S., Xynos, J.D., Wood, H., Hughes, F.J., Hughes, S.P., Episkopou, V., and Polak, J.M., Differentiation of Osteoblasts and in Vitro Bone Formation from Murine Embryonic Stem Cells, Tissue Eng., 2001, vol. 7, pp. 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M.K., Inokuma, M.S., Denham, J., Mujtaba, T., Chiu, C.P., and Rao, M.S., Enrichment of Neurons and Neural Precursors from Human Embryonic Stem Cells, Exp. Neurol., 2001, vol. 172, pp. 383–397.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M.K., Rosler, E.S., Fisk, G.J., Brandenberger, R., Ares, X., Miura, T., Lucero, M., and Rao, M.S., Properties of Four Human Embryonic Stem Cell Lines Maintained in a Feeder-Free Culture System, Dev. Dyn., 2004, vol. 229, pp. 243–258.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., Smith, A., Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells, Cell, 2003, vol. 113, pp. 643–655.

    Article  PubMed  CAS  Google Scholar 

  • Chang, I.K., Jeong, D.K., Hong, Y.H., Park, T.S., Moon, Y.K., Ohno, T., Han, J.Y., Production of Germline Chimeric Chickens by Transfer of Cultured Primordial Germ Cells, Cell Biol. Int., 1997, vol. 21, pp. 495–499.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, A.R., Murine Genetic Models of Human Disease, Curr. Opin. Gen. Dev., 1994, vol. 4, pp. 453–460.

    Article  CAS  Google Scholar 

  • Cole, R.J., Edwards, R.G., and Paul, J., Cytodifferentiation and Embryogenesis in Cell Colonies and Tissue Cultures Derived from Ava and Blastocysts of the Rabbit, Dev. Biol., 1966, vol. 13, pp. 385–407.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K., Nuclear Reprogramming of Somatic Cells after Fusion with Human Embryonic Stem Cells, Science, 2005, vol. 309, pp. 1369–1373.

    Article  PubMed  CAS  Google Scholar 

  • Dani, C., Smith, A.G., Dessolin, S., Leroy, P., Staccini, L., Villageois, P., Darimont, C., and Ailhaud, G., Differentiation of Embryonic Stem Cells into Adipocytes in Vitro, J. Cell Sci., 1997, vol. 110, pp. 1279–1285.

    PubMed  CAS  Google Scholar 

  • Deb, K.D. and Sarda, K., Human Embryonic Stem Cells: Preclinical Perspectives, J. Transl. Med., 2008, vol. 29, pp. 6–7.

    Google Scholar 

  • Ding, S., Wu, T.Y., Brinker, A., Peters, E.C., Hur, W., Gray, N.S., and Schulz, P.G., Synthetic Small Molecules that Control Stem Cell Fate, Proc. Natl. Acad. Sci. USA., 2003, vol. 100, pp. 7632–7637.

    Article  PubMed  CAS  Google Scholar 

  • Doetschman, T., Williams, P., and Maeda, N., Establishment of Hamster Blastocyst-Derived Embryonic Stem (ES) Cells, Dev. Biol., 1988, vol. 127, pp. 224–227.

    Article  PubMed  CAS  Google Scholar 

  • Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R., The in Vitro Development of Blastocyst-Derived Embryonic Stem Cell Lines: Formation of Visceral Yolk Sac, Blood Islands and Myocardium, J. Embryol. Exp. Morphol., 1985, vol. 87, pp. 27–45.

    PubMed  CAS  Google Scholar 

  • Drab, M., Haller, H., Bychkov, R., Erdmann, B., Lindschau, C., Haase, H., Morano, I., Luft, F.C., and Wobus, A.M., From Totipotent Embryonic Stem Cells to Spontaneously Contracting Smooth Muscle Cells: A Retinoic Acid and db-cAMP in Vitro Differentiation Model, FASEB J., 1997, vol. 11, pp. 905–915.

    PubMed  CAS  Google Scholar 

  • Dravid, G., Ye, Z., Hammond, H., Chen, G., Pyle, A., Donovan, P., Yu, X., and Cheng, L., Defining the Role of Wnt/β-Catenin Signaling in the Survival, Proliferation and Self-Renewal of Human Embryonic Stem Cells, Stem Cells, 2005, vol. 23, pp. 1489–1501.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M.J. and Kaufman, M.H., Establishment in Culture of Pluripotential Cells from Mouse Embryos, Nature, 1981, vol. 292, pp. 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Fairchild, P.J., Brook, F.A., Gardner, R.L., Graca, L., Strong, V., Tone, Y., Tone, M., Nolan, K.F., and Waldmann, H., Directed Differentiation of Dendritic Cells from Mouse Embryonic Stem Cells, Curr. Biol., 2000, vol. 10, pp. 1515–1518.

    Article  PubMed  CAS  Google Scholar 

  • Finley, M.F., Kulkarni, N., and Huettner, J.E., Synapse Formation and Establishment of Neuronal Polarity by P19 Embryonic Carcinoma Cells and Embryonic Stem Cells, J. Neurosci., 1996, vol. 16, pp. 1056–1065.

    PubMed  CAS  Google Scholar 

  • Fraichard, A., Chassande, O., Bilbaut, G., Dehay, C., Savatier, P., and Samarut, J., In Vitro Differentiation of Embryonic Stem Cells into Glial Cells and Functional Neurons, J. Cell Sci., 1995, vol. 108, pp. 3181–3188.

    PubMed  CAS  Google Scholar 

  • Ginis, I., Luo, Y., and Miura, T., Differences between Human and Mouse Embryonic Stem Cells, Dev. Biol., 2004, vol. 269, pp. 360–380.

    Article  PubMed  CAS  Google Scholar 

  • Graves, K.H. and Moreadith, R.W., Derivation and Characterization of Putative Pluripotential Embryonic Stem Cells from Preimplantation Rabbit Embryos, Mol. Reprod. Dev., 1993, vol. 36, pp. 424–433.

    Article  PubMed  CAS  Google Scholar 

  • Guo, X.M., Zhao, Y.S., Chang, H.X., Wang, C.Y., E, L.L., Zhang, X.A., Duan, C.M., Dong, L.Z., Jiang, H., Li, J., Song, Y., and Yang, X., Creation of Engineered Cardiac Tissue in Vitro from Mouse Embryonic Stem Cells, Circulation, 2006, vol. 113, pp. 2229–2237.

    Article  PubMed  Google Scholar 

  • Haase, I., Knaup, R., Wartenberg, M., Sauer, H., Hescheler, J., and Mahrle, G., In Vitro Differentiation of Murine Embryonic Stem Cells Into Keratinocyte-Like Cells, Eur. J. Cell Biol., 2007, vol. 86, pp. 801–805.

    Article  PubMed  CAS  Google Scholar 

  • Hamazaki, T., Iiboshi, Y., Oka, M., Papst, P.J., Meacham, A.M., Zon, L.I., Terada, N., Hepatic Maturation in Differentiating Embryonic Stem Cells in Vitro, FEBS Lett., 2001, vol. 497, pp. 15–19.

    Article  PubMed  CAS  Google Scholar 

  • Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu L.C., Townes, T.M., and Jaenisch, R., Treatment of Sickle Cell Anemia Mouse Model with iPS Cells Generated from Autologous Skin, Science, 2007, vol. 318, pp. 1920–1923.

    Article  PubMed  CAS  Google Scholar 

  • Hart, A.H., Hartley, L., Ibrahim, M., and Rabb, L., Identification, Cloning and Expression Analysis of the Pluripotency Promoting Nanog Genes in Mouse and Human, Dev. Dynamics, 2004, vol. 230, pp. 187–198.

    Article  CAS  Google Scholar 

  • Hayes, B., Fagerlie, S.R., Ramakrishnan, A., Baran, S., Harkey, M., Graf, L., Bar, M., Bendoraite, A., Tewari, M., and Torok-Storb, B., Derivation, Characterization, and In Vitro Differentiation of Canine Embryonic Stem Cells, Stem Cells, 2008, vol. 26, pp. 465–473.

    Article  PubMed  CAS  Google Scholar 

  • Heard, E., Montgelard, F., Arnaud, D., Chureau, C., Vourc’h C., and Avner, P., Human XIST Yeast Artificial Chromosome Transgenes Show Partial X Inactivation Center Function in Mouse Embryonic Stem Cells, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 6841–6846.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, J.K., Draper, J.S., Baillie, H.S., Fishel, S., Thomson, J.A., Moore, H., and Andrews, P.W., Preimplantation Human Embryos and Embryonic Stem Cells Show Comparable Expression of Stage-Specific Embryonic Antigens, Stem Cells, 2002, vol. 20, pp. 329–337.

    Article  PubMed  CAS  Google Scholar 

  • Hori, Y., Rulifson, I.C., Tsai, B.C., Heit, J.J., Cahoy, J.D., and Kim, S.K., Growth Inhibitors Promote Differentiation of Insulin-Producing Tissue from Embryonic Stem Cells, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 16 105–16 110.

    CAS  Google Scholar 

  • Humphrey, R.K., Beattie, G.M., Lopez, A.D., Bucay, N., King, C.C., Firpo, M.T., Rose-John, S., and Hayer, A., Maintenance of Pluripotency in Human Embryonic Stem Cells Is Stat3 Independent, Stem Cells, 2004, vol. 22, pp. 522–530.

    Article  PubMed  CAS  Google Scholar 

  • Hurlbut, W.B., Altered Nuclear Transfer as a Morally Acceptable Means for the Producement of Human Embryonic Stem Cells, Natl. Cathol. Bioeth., 2005, vol. 5, pp. 145–151.

    Google Scholar 

  • Iannaccone, P.M., Taborn, G.U., Garton, R.L., Caplice, M.D., and Brenin, D.R., Pluripotent Embryonic Stem Cells from the Rat Are Capable of Producing Chimeras, Dev. Biol., 1994, vol. 163, pp. 288–292.

    Article  PubMed  CAS  Google Scholar 

  • Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., and Benvenisty, N., Differentiation of Human Embryonic Stem Cells into Embryoid Bodies Compromising the Three Embryonic Germ Layers, Mol. Med., 2000, vol. 6, pp. 88–95.

    PubMed  CAS  Google Scholar 

  • Ivanova, N., Dobrin, R., Lu, R., Kotenko, I., Levorse, J., Decoste, C., Schafer, X., Lun, Y., and Lemischka, I.R., Dissecting Self-Renewal in Stem Cells with RNA Interference, Nature, 2006, vol. 442, pp. 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch, R., Retroviral Expression in Embryonic Stem Cells and Hematopoietic Stem Cells, Mol. Cell Biol., 2000, vol. 20, pp. 7419–7426.

    Article  PubMed  Google Scholar 

  • Ji, L., Allen-Hoffmann, B.L., de Pablo, J.J., Palecek, S.P., Generation and Differentiation of Human Embryonic Stem Cell-Derived Keratinocyte Precursors, Tissue Eng., 2006, vol. 12, pp. 665–679.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E.A., Tosh, D., Wilson, D.I., Lindsay, S., and Forrester, L.M., Hepatic Differentiation of Murine Embryonic Stem Cells, Exp. Cell Res., 2002, vol. 272, pp. 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J., Mysliwiec, M.R., and Lee, Y., Roles of JUMONJI in Mouse Embryonic Development, Dev. Dyn., 2005, vol. 232, pp. 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Kang, X., Xie, Y., Powell, H.M., James Lee, L., Belury, M.A., Lanutti, J.J., and Kniss, D.A., Adipogenesis of Murine Embryonic Stem Cells in a Three-Dimensional Culture System using Electrospun Polymer Scaffolds, Biomaterials, 2007, vol. 28, pp. 450–458.

    Article  PubMed  CAS  Google Scholar 

  • Kania, G., Blyszczuk, P., Jochheim, A., Ott, M., and Wobus, A.M., Generation of Glycogen and Albumin Producing Hepatocyte-Like Cells from Embryonic Stem Cells, Biol. Chem., 2004, vol. 385, pp. 943–953.

    Article  PubMed  CAS  Google Scholar 

  • Kania, G., Corbeil, D., Tarasov, K.V., Blyszczuk, P., Huttner, W.B., Boheler, K.R., Wobus, A.M., The Somatic Stem Cell Marker Prominin-1/CD133 Is Expressed in Embryonic Stem Cell-Derived Progenitors, Stem Cells, 2005, vol. 23, pp. 791–804.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, D.S., and Thomson, J.A., Human ES Cells: Haematopoiesis and Transplantation Strategies, J. Anat., 2002, vol. 200, pp. 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., Nishikawa, S.I., and Sasai, Y., Induction of Midbrain Dopaminergic Neurons from ES Cells by Stromal Cell-Derived Inducing Activity, Neuron, 2000, vol. 28, pp. 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, H., Suemori, H., Mizuseki, K., Watanabe, K., Urano, F., Ichinose, H., Haruta, M., Takahashi, M., Yoshikawa, K., Nishikawa, S.I., Nakatsuji, N., and Sasai, Y., Generation of Dopaminergic Neurons and Pigmented Epithelia from Primate ES Cells by Stromal Cell-Derived Inducing Activity, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L., Human Embryonic Stem Cells Can Differentiate into Myocytes with Structural and Functional Properties of Cardiomyocytes, J. Clin. Invest., 2001, vol. 108, pp. 407–414.

    PubMed  CAS  Google Scholar 

  • Keller, G.M., In Vitro Differentiation of Stem Cells, Curr. Opin. Cell Biol., 1995, vol. 7, pp. 862–869.

    Article  PubMed  CAS  Google Scholar 

  • Kielman, M.F., Rindapaa, M., Gaspar, C., van Poppel, N., Breukel, C., van Leeuwen, S., Taketo, M.M., Roberts, S., Smits, R., and Fodde, R., Apc Modulates Embryonic Stem-Cell Differentiation by Controlling the Dosage of Beta-Catenin Signaling, Nature Genet., 2002, vol. 32, pp. 594–605.

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya, I., Chung, Y., Becker, S., Lu, S.J., and Lanza, R., Human Embryonic Stem Cell Lines Derived from Single Blastomeres, Nature, 2006, vol. 444, pp. 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, J., Hegert, C., Guan, K., Wobus, A.M., Muller, P.K., and Rohwedel, J., Embryonic Stem Cell-Derived Chondrogenic Differentiation in Vitro: Activation by BMP-2 and BMP-4, Mech. Dev., 2000, vol. 92, pp. 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Krylova, T.A., Zenin, V.V., Mikhailova, N.A., Pinaev, G.P., Nikol’skii, N.N., and Polianskaia, G.G., Continuous Human Embryonic Stem Cell Lines, Tsitologiia, 2005, vol. 47, no. 2, pp. 121–129.

    PubMed  CAS  Google Scholar 

  • Krylova, T.A., Zenin, V.V., Musorina, N.S., Baranov, V.S., Bichevaya, N.K., Korsak, V.S., Nikol’skii, N.N., Pinaev, G.P., and Polianskaia, G.G., Isolation and Characterisation of Continuous Human Embryonic Stem Cell Lines, Tsitologiia, 2003, vol. 45, no. 12, pp. 1172–1178.

    PubMed  CAS  Google Scholar 

  • Lee, H., Shamy, G.A., Elkabetz, Y., Shofield, C.M., Harrsion, N.L., Panagiotakos, G., Socci, N.D., Tabar, V., and Studer, L., Directed Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Motoneurons, Stem Cells, 2007, vol. 25, pp. 1931–1939.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M., and McKay, R.D., Efficient Generation of Midbrain and Hindbrain Neurons from Mouse Embryonic Stem Cells, Nat. Biotechnol., 2000, vol. 18, pp. 675–679.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Qu, Y., Stewart, T.J., Howard, M.J., Chakrabortty, S., Holekamp, T.F., and McDonald, J.W., Embryonic Stem Cells Differentiate into Oligodendrocytes and Myelinate in Culture and after Spinal Cord Transplantation, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 6126–6131.

    Article  PubMed  CAS  Google Scholar 

  • Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K.Y., Sung, K.W., Lee, C.W.H., Zhao, X.D., Chiu, K.P., Lipovich, L., Kuznetsov, V.A., Robson, P., Stanton, L.W., Wei, C.L., Ruan, Y., Lim, B., and Ng, H.H., The Oct4 and Nanog Transcription Network Regulates Pluripotency in Mouse Embryonic Stem Cells, Nat. Genet., 2005, vol. 38, pp. 431–440.

    Article  CAS  Google Scholar 

  • Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R., Differentiation of Embryonic Stem Cells to Insulin-Secreting Structures Similar to Pancreatic Islets, Science, 2001, vol. 292, pp. 1389–1394.

    Article  PubMed  CAS  Google Scholar 

  • Maltsev, V.A., Rohwedel, J., Hescheler, J., and Wobus, A.M., Embryonic Stem Cells Differentiate in Vitro into Cardiomyocytes Representing Sinusnodal, Atrial and Ventricular Cell Types, Mech. Dev., 1993, vol. 44, pp. 41–50.

    Article  PubMed  CAS  Google Scholar 

  • Maltsev, V.A., Wobus, A.M., Rohwedel, J., Bader, M., and Hescheler, J., Cardiomyocytes Differentiated in Vitro from Embryonic Stem Cells Developmentally Express Cardiac-Specific Genes and Ionic Currents, Circ. Res., 1994, vol. 75, pp. 233–244.

    PubMed  CAS  Google Scholar 

  • McWhir, J., Schnieke, A.E., Ansell, R., Wallace, H., Colman, A., Scott, A.R., and Kind, A.J., Selective Ablation of Differentiated Cells Permits Isolation of Embryonic Stem Cell Lines from Murine Embryos with a Non-Permissive Genetic Background, Nature Genet., 1996, vol. 14, pp. 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, A. and Jaenisch, R., Generation of Nuclear Transfer-Derived Pluripotent ES Cells from Cloned Cdx2-Deficient Blastocysts, Nature, 2006, vol. 439, pp. 212–215.

    Article  PubMed  CAS  Google Scholar 

  • Meshorer, E. and Misteli, T., Chromatin in Pluripotent Embryonic Stem Cells and Differentiation, Nat. Rev. Mol. Cell Biol., 2006, vol. 7, pp. 540–546.

    Article  PubMed  CAS  Google Scholar 

  • Metzger, J.M., Lin, W.I., and Samuelson, L.C., Vital Staining of Cardiac Myocytes during Embryonic Stem Cell Cardiogenesis in Vitro, Circ. Res., 1996, vol. 78, pp. 547–552.

    PubMed  CAS  Google Scholar 

  • Mitalipov, Sh.M., Mitalipova, M.M., and Ivanov V.I., Effect of Culturing Duration on Pluripotency of Mouse Embryonic Stem (AS) Cells in Vitro and in Vivo, Ontogenez, 1994, vol. 25, no. 6, pp. 19–26.

    PubMed  Google Scholar 

  • Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., Yamanaka, S., The Homeoprotein Nanog is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells, Cell, 2003, vol. 113, pp. 631–642.

    Article  PubMed  CAS  Google Scholar 

  • Mitsunaga, K., Araki, K., Mizusaki, H., Morohashi, K., Haruna, K., Nakagata, N., Giguere, V., Yamamura, K., and Abe, K., Loss of PGC-Specific Expression of the Orphan Nuclear Receptor ERR-b Results in Reduction of Germ Cell Number in Mouse Embryos, Mech. Dev., 2004, vol. 121, pp. 237–246.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, T., Kodama, H., and Honjo, T., In Vitro Development of Primitive and Definitive Erythrocytes from Different Precursors, Science, 1996, vol. 272, pp. 722–724.

    Article  PubMed  CAS  Google Scholar 

  • Nikolskii, N.N., Gabai, I.A., and Somova, N.V., Human Embryonic Stem Cells. Problems and Perspectives, Tsitologiia, 2007, vol. 49, no. 7, pp. 529–537.

    CAS  Google Scholar 

  • Nishikawa, S.I., Nishikawa, S., Hirashima, M., Matsuyoshi, N., and Kodama, H., Progressive Lineage Analysis by Cell Sorting and Culture Identifies FLK1 + VE-Cadherin + Cells at a Diverging Point of Endothelial and Hemopoietic Lineages, Development, 1998, vol. 125, pp. 1747–1757.

    PubMed  CAS  Google Scholar 

  • Niwa, H., Burdon, T., Chambers, I., and Smith, A., Self-Renewal of Pluripotent Embryonic Stem Cells is Mediated via Activation of STAT3, Genes. Dev., 1998, vol. 12, pp. 2048–2060.

    Article  PubMed  CAS  Google Scholar 

  • Niwa, H., Miyazaki, J., Smith, A.G., Quantitative Expression of Oct-3/4 Defines Differentiation, Dedifferentiation or Self-Renewal of ES Cells, Nat. Genet., 2000, vol. 24, pp. 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Niwa, H., Toyooka, Y., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R., and Rossant, J., Interaction between Oct3/4 and Cdx2 Determines Trophectoderm Differentiation, Cell, 2005, vol. 123, pp. 917–929.

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum, J., Minami, E., Laflamme, M.A., Virag, J.A., Ware, C.B., Masino, A., Muskheli, V., Pabon, L., Reinecke, H., and Murry, C.E., Transplantation of Undifferentiated Murine Embryonic Stem Cells in the Heart: Teratoma Formation and Immune Response, FASEB J., 2007, vol. 21, pp. 1345–1357.

    Article  PubMed  CAS  Google Scholar 

  • Odorico, J.S., Kaufman, D.S., and Thomson, J.A., Multilineage Differentiation from Human Embryonic Stem Cell Lines, Stem Cells, 2001, vol. 19, pp. 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Osafune, K., Caron, L., Borowiak, M., Martinez, R.J., Fitz-Gerald, C.S., Sato, Y., Cowan, C.A., Chien, K.R., and Melton, D.A., Marked Differences in Differentiation Propensity among Human Embryonic Stem Cell Lines, Nature Biotechnol., 2007, vol. 3, pp. 313–315.

    Article  CAS  Google Scholar 

  • Pain, B., Clark, M.E., Shen, M., Nakazawa, H., Sakurai, M., Samarut, J., and Etches, R.J., Long-Term in Vitro Culture and Characterization of Avian Embryonic Stem Cells with Multiple Morphogenetic Potentialities, Development, 1996, vol. 122, pp. 2339–2348.

    PubMed  CAS  Google Scholar 

  • Pan, G., Lin, J., Zhou, Y., Zheng, H., and Pei, D., A Negative Feedback Loop of Transcription Factors That Controls Stem Cell Pluripotency and Self-Renewal, FASEB J., 2006, vol. 20, pp. 1094–2002.

    Google Scholar 

  • Pau, K.Y. and Wolf, D.P., Derivation and Characterization of Monkey Embryonic Stem Cells, Reprod. Biol. Endocrinol., 2004, vol. 2, pp. 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Pera, M.F., Reubinoff, B., and Trounson, A., Human Embryonic Stem Cells, J. Cell Sci., 2000, vol. 113, pp. 5–10.

    PubMed  CAS  Google Scholar 

  • Pesce, M., Anastassiadis, K., and Scholer, H.R., Oct-4: Lessons of Totipotency from Embryonic Stem Cells, Cell Tiss. Org., 1999, vol. 165, pp. 144–152.

    Article  CAS  Google Scholar 

  • Potocnik, A.J., Nielsen, P.J., and Eichmann, K., In Vitro Generation of Lymphoid Precursors from Embryonic Stem Cells, EMBO J., 1994, vol. 13, pp. 5274–5283.

    PubMed  CAS  Google Scholar 

  • Prelle, K., Vassiliev, I.M., Vassilieva, S.G., Wolf, E., and Wobus, A.M., Establishment of Pluripotent Cell Lines from Vertebrate Species: Present Status and Future Prospects, Cell Tiss. Org., 1999, vol. 165, pp. 220–236.

    Article  CAS  Google Scholar 

  • Pryzhova, M.V., Lagarkova, M.A., Lyakisheva, A.V., Revazova, E.S., Gnuchev, N.V., and Kiselev, S.L., Obtaining Human Embryonic Stem Cell Lines, Their Analysis and Characteristic on the Basis of Specific Markers, Inform. Byull. Kletochnye kul’tury, 2004, vol. 19, pp. 22–25.

    Google Scholar 

  • Rambhatla, L., Chiu, C.P., Kundu, P., Peng, Y., and Carpenter, M.K., Generation of Hepatocyte-Like Cells from Human Embryonic Stem Cells, Cell Transplant., 2003, vol. 12, pp. 1–11.

    Article  PubMed  Google Scholar 

  • Rao, S. and Orkin, S.H., Unraveling the Transcriptional Network Controlling ES Cell Pluripotency, Genome Biology, 2006, vol. 7, pp. 230–234.

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A., and Bongso, A., Embryonic Stem Cell Lines from Human Blastocysts: Somatic Differentiation in Vitro, Nat. Biotechnol., 2000, vol. 18, pp. 399–404.

    Article  PubMed  CAS  Google Scholar 

  • Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., and Weissman, I.L., A Role for Wnt Signaling in Self-Renewal of Hematopoietic Stem Cells, Nature, 2003, vol. 423, pp. 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Richards, M., Tan, S.P., Tan, J.H., Chan, W.K., and Bongso, A., The Transcriptome Profile of Human Embryonic Stem Cells as Defined by SAGE, Stem Cells, 2004, vol. 22, pp. 51–64.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Sariola, H., Zerwes, H.G., Sasse, J., Ekblom, P., Kemler, R., and Doetschman, T., Vasculogenesis and Angiogenesis in Embryonic-Stem-Cell-Derived Embryoid Bodies, Development, 1988, vol. 102, pp. 471–478.

    PubMed  CAS  Google Scholar 

  • Rodda, D.J., Chew, J.L., Lim, H.L., Loh, Y.H., Wang, B., and Robson, P., Transcriptional Regulation of Nanog by OCT4 and SOX2, J. Biol. Chem., 2005, vol. 26, pp. 24 731–24 737.

    Google Scholar 

  • Rohwedel, J., Maltsev, V., Bober, E., Arnold, H.H., Hescheler, J., and Wobus, A.M., Muscle Cell Differentiation of Embryonic Stem Cells Reflects Myogenesis in Vivo: Developmentally Regulated Expression of Myogenic Determination Genes and Functional Expression of Ionic Currents, Dev. Biol., 1994, vol. 164, pp. 87–101.

    Article  PubMed  CAS  Google Scholar 

  • Rolletschek, A., Chang, H., Guan, K., Czyz, J., Meyer, M., and Wobus, A.M., Differentiation of Embryonic Stem Cell-Derived Dopaminergic Neurons Is Enhanced by Survival-Promoting Factors, Mech. Dev., 2001, vol. 105, pp. 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Sartiani, L., Bettiol, E., Stillitano, F., Mugelli, A., Cerbai, E., and Jaconi, M.E., Developmental Changes in Cardiomyocytes Differentiated from Human Embryonic Stem Cells: A Molecular and Electrophysiological Approach, Stem Cells, 2007, vol. 25, pp. 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  • Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou A, H., Maintanence of Pluripotency in Human and Mouse Embryonic Stem Cells through Activation of Wnt Signaling by a Pharmacological GSK-3-Specific Inhibitor, Nature Med., 2004, vol. 10, pp. 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Sato, N., Sanjuan, I.M., and Heke, M., Molecular Signature of Human Embryonic Stem Cells and Its Comparison with the Mouse, Dev. Biol., 2003, vol. 260, pp. 404–413.

    Article  PubMed  CAS  Google Scholar 

  • Schoonjans, L., Albright, G.M., Li, J.L., Collen, D., and Moreadith, R.W., Pluripotential Rabbit Embryonic Stem (ES) Cells Are Capable of Forming Overt Coat Color Chimeras Following Injection into Blastocysts, Mol. Reprod. Dev., 1996, vol. 45, pp. 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Schoor, M., Schuster-Gossler, K., and Gossler, A., The Etl-1 Gene Encodes a Nuclear Protein Differentially Expressed During Early Mouse Development, Dev. Dyn., 1993, vol. 197, pp. 227–237.

    PubMed  CAS  Google Scholar 

  • Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D.A., Benvenisty, N., From the Cover: Effects of Eight Growth Factors on the Differentiation of Cells Derived from Human Embryonic Stem Cells, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11307–11312.

    Article  PubMed  CAS  Google Scholar 

  • Segev, H., Fishman, B., Ziskind, A., Shulman, M., and Itskovitz-Eldor, J., Differentiation of Human Embryonic Stem Cells into Insulin-Producing Clusters, Stem Cells, 2004, vol. 22, pp. 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Sene, K.H., Porter, C.J., Palidwor, G., Perez-Iratxeta, C., Muro, E.M., Campbell, P.A., Rudnicki, M.A., and Andrade-Navarro, M.A., Gene Function in Early Mouse Embryonic Stem Cell Differentiation, BMG Genomics, 2007, vol. 8, pp. 85–106.

    Article  CAS  Google Scholar 

  • Shin, S., Dalton, S., and Stice, S.L., Human Motor Neuron Differentiation from Human Embryonic Stem Cells, Stem Cells Dev., 2005, vol. 14, pp. 266–269.

    Article  PubMed  CAS  Google Scholar 

  • Sinz, M.W. and Kim, S., Stem Cells, Immortalized Cells and Primary Cells in ADMET Assays, Drug Discovery Today: Technologies, 2006, vol. 3, pp. 79–85.

    Article  Google Scholar 

  • Slukvin, I.I., Vodyanik, M.A., Thomson, J.A., and Gumenyuk, M.E., Directed Differentiation of Human Embryonic Stem Cells into Functional Dendritic Cells through the Myeloid Pathway, J. Immunol., 2006, vol. 176, pp. 2924–2932.

    PubMed  CAS  Google Scholar 

  • Solter, D. and Knowles, B.B., Monoclonal Antibody Defining a Stagespecific Mouse Embryonic Antigen (SSEA-1), Proc. Natl. Acad. Sci. USA, 1978, vol. 75, pp. 5565–5569.

    Article  PubMed  CAS  Google Scholar 

  • Strizzi, L., Bianco, C., Normanno, N., and Salomon, D., Cripto-1: A Multifunctional Modulator during Embryogenesis and Oncogenesis, Oncogene, 2005, vol. 24, pp. 5731–5741.

    Article  PubMed  CAS  Google Scholar 

  • Strubing, C., Ahnert-Hilger, G., Shan, J., Wiedenmann, B., Hescheler, J., and Wobus, A.M., Differentiation of Pluripotent Embryonic Stem Cells into the Neuronal Lineage in Vitro Gives Rise to Mature Inhibitory and Excitatory Neurons, Mech. Dev., 1995, vol. 53, pp. 275–287.

    Article  PubMed  CAS  Google Scholar 

  • Suemori, H., Tada, T., Torii, R., Hosoi, Y., Kobayashi, K., Imahie, H., Kondo, Y., Iritani, A., and Nakatsuji, N., Establishment of Embryonic Stem Cell Lines from Cynomolgus Monkey Blastocysts Produced by IVF or ICSI, Dev. Dyn., 2001, vol. 222, pp. 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Sukoyan, M.A., Kerkis, A.Y., Mello, M.R.B., Kerkis, I.E., Visintin, J.A., and Pereira, L.V., Establishment of New Murine Embryonic Stem Cell Lines for the Generation of Mouse Models of Human Genetic Diseases, Braz. J. Med. Biol. Res., 2002, vol. 35, pp. 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K. and Yamanaka, S., Induction of Pluripotent Stem Cell Lines from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, 2007, vol. 126, pp. 663–676.

    Article  CAS  Google Scholar 

  • Tang, F., Shang, K., Wang, X., and Gu, J., Differentiation of Embryonic Stem Cell to Astrocytes Visualized by Green Fluorescent Protein, Cell Mol. Neurobiol., 2002a, vol. 22, pp. 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Tang, K., Yang, Y., Gao, X., Wang, C., Liu, L., Kitani, H., Atsumi, T., and Jing, N., Wnt-1 Promotes Neuronal Differentiation and Inhibits Gliogenesis in P19 Cells, Biochem. Biophys. Res. Commun., 2002b, vol. 293, pp. 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L., Gardner, R.L., and McKay, R.D., New Cell Lines from Mouse Epiblast Share Defining Features with Human Embryonic Stem Cells, Nature, 2007, vol. 448, pp. 196–199.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.R. and Gudas, L.J., Retinoic Acid Induces Parietal Endoderm but not Primitiv Endoderm and Visceral Endoderm Differentiation in F9 Teratocarcinoma Stem Cells with a Targeted Deletion of the Rex-1 (Zpf-42) Gene, Mol. Cell Endocrinol., 2007, vol. 195, pp. 119–133.

    Article  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, 1998, 282, pp. 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris C.P., and Hearn, J.P., Pluripotent Cell Lines Derived from Common Marmoset Callithrix jacchus Blastocysts, Biol. Reprod., 1996, vol. 55, pp. 254–259.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., Becker, R.A., and Hearn, J.P., Isolation of a Primate Embryonic Stem Cell Line, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 7844–7848.

    Article  PubMed  CAS  Google Scholar 

  • Tropepe, V., Hitoshi, S., Sirard, C., Mak, T.W., Rossant, J., and van der Kooy, D., Direct Neural Fate Specification from Embryonic Stem Cells: A Primitive Mammalian Neural Stem Cell Stage Acquired through a Default Mechanism, Neuron, 2001, vol. 30, pp. 65–78.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, M., Wedemeyer, J., Ganiatsas, S., Tam S.Y., Zon, L.I., and Galli, S.J., In Vivo Immunological Function of Mast Cells Derived from Embryonic Stem Cells: an Approach for the Rapid Analysis of Even Embryonic Lethal Mutations in Adult Mice in Vivo, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 9186–9190.

    Article  PubMed  CAS  Google Scholar 

  • Valtieri, M., Gabbianelli, M., Pelosi, E., Bassano, E., Petti, S., Russo, G., Testa, U., and Peschle, C., Erythropoietin Alone Induces Erythroid Bursts Formation by Human Embryonic but not Adult BFU-E in Unicellular Serum-Free Culture, Blood, 1989, vol. 74, pp. 460–470.

    PubMed  CAS  Google Scholar 

  • Van Hoof, D., Passier, R., Oostwaard, D.W.V., Pinkse, M.W.H., and Heck, A.J.R., Mummery C.L., and Krijgsveld, J., A Quest for Human and Mouse Embryonic Stem Cell-Specific Proteins, Mol. Cell. Proteomics, 2006, vol. 5, pp. 1261–1273.

    Article  PubMed  CAS  Google Scholar 

  • Vassilieva, S., Guan, K., Pich, U., and Wobus, A.M., Establishment of SSEA-1- and Oct-4-Expressing Rat Embryonic Stem-Like Cell Lines and Effects of Cytokines of the IL-6 Family on Clonal Growth, Exp. Cell Res., 2000, vol. 258, pp. 361–373.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, J. and Andrews, P.W., Expression of Wnt and Notch Pathway Genes in a Pluripotent Human Embryonal Carcinoma Cell Line and Embryonic Stem Cell, Apmis, 2003, vol. 111, pp. 197–210.

    Article  PubMed  CAS  Google Scholar 

  • Wei, C.L., Miura, T., Robson, P., Lim, S.K., Xu, X.Q., Lee, M.Y.C., Gupta, S., Stanton, L., Luo, Y., Schmitt, J., Thies, S., Wang, W., Khrebtukova, I., Zhou, D., Liu, E.T., Ruan, Y.J., Rao, M., and Lim, B., Transcriptome Profiling of Human and Murine ESCs Identifies Divergent Paths Required to maintain the Stem Cell State, Stem Cells, 2005, vol. 23, pp. 166–185.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, R., The Dawn of the New Era, National Geographic, 2005, pp. 61–87.

  • Wernig, M., Benninger, F., Schmandt, T., Rade, M., Tucker, K.L., Bussow, H., Beck, H., and Brustle, O., Functional Integration of Embryonic Stem Cell-Derived Neurons in Vivo, J. Neurosci., 2004, vol. 24, pp. 5258–5268.

    Article  PubMed  CAS  Google Scholar 

  • Wichterle, H., Lieberam, I., Porter, J.A., and Jessell, T.M., Directed Differentiation of Embryonic Stem Cells into Motor Neurons, Cell, 2002, vol. 110, pp. 385–397.

    Article  PubMed  CAS  Google Scholar 

  • Wiles, M.V. and Keller, G., Multiple Hematopoietic Lineages Develop from Embryonic Stem (ES) Cells in Culture, Development, 1991, vol. 111, pp. 259–267.

    PubMed  CAS  Google Scholar 

  • Wobus, A.M. and Boheler, K.R., Embryonic Stem Cells: Prospects for Developmental Biology and Cell Therapy, Physiol. Rev., 2005, vol. 85, pp. 635–678.

    Article  PubMed  CAS  Google Scholar 

  • Wobus, A.M., Holzhausen, H., Jakel, P., and Schoneich, J., Characterization of a Pluripotent Stem Cell Line Derived from a Mouse Embryo, Exp. Cell Res., 1984, vol. 152, pp. 212–219.

    Article  PubMed  CAS  Google Scholar 

  • Xie, C.Q., Zhang, J., Villacorta, L., Cui, T., Huang, H., and Chen, Y.E., A Highly Efficient Method to Differentiate Smooth Muscle Cells from Human Embryonic Stem Cells, Arterioscler. Thromb. Vasc. Biol., 2007, vol. 27, pp. 311–312.

    Article  CAS  Google Scholar 

  • Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M.K., Feeder-Free Growth of Undifferentiated Human Embryonic Stem Cells, Nat. Biotechnol., 2001, vol. 19, pp. 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., and Thomson, J.A., BMP4 Initiates Human Embryonic Stem Cell Differentiation to Trophoblast, Nat. Biotechnol., 2002, vol. 20, pp. 1261–1264.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., Naito, M., Nakao, K., and Nishikawa, S., Flk1-Positive Cells Derived from Embryonic Stem Cells Serve as Vascular Progenitors, Nature, 2000, vol. 408, pp. 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Ying, Q.L., Nichols, J., Chambers, I., and Smith, A., BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3, Cell, 2003, vol. 115, pp. 281–292.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewitcz-Bourget, J., Frane, J.L., Tian, S., Nile, J., Jonsdottir, G.A., Ruotti, V., and Stewart, R., Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells, Science, 2007, vol. 318, pp. 1917–1920.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, H., Corbi, N., Basilico, C., and Dailey, L., Developmental Specific Activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3, Genes Dev., 1995, 9, pp. 2635–2645.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Grigoryan.

Additional information

Original Russian Text © A.S. Grigoryan, P.V. Kruglyakov, 2009, published in Tsitologiya, vol.51, No. 5, 2009, pp. 442–454.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoryan, A.S., Kruglyakov, P.V. Murine embryonic stem cells as a model for human embryonic stem-cell research. Cell Tiss. Biol. 3, 199–212 (2009). https://doi.org/10.1134/S1990519X09030018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X09030018

Key words

Navigation