Skip to main content
Log in

Influence of the Underlying Surface on Greenhouse Gas Concentrations in the Atmosphere Over Central Siberia

  • Environmental Protection
  • Published:
Geography and Natural Resources Aims and scope Submit manuscript

Abstract

A crucial issue in atmospheric studies on greenhouse gas content involves assessing the representativeness (footprint) having influence on their concentrations measured by tall towers. In this study, the Stochastic Time-Inverted Lagrangian Transport (STILT) model was used to estimate seasonal cumulative footprint climatology for greenhouse gases measurements obtained on the 301-meter-high Zotino Tall Tower Observation Facility (ZOTTO) for the growing seasons (May-September) from 2008 to 2012 (with the exception of 2011). Results showed that the ZOTTO seasonal concentration cumulative footprint climatology for four years reached 6.9×106 km2 and the 75% cumulative footprints varied from 1.9 to 2.3×106 km2. For the same period, the Russian Land Cover map based on MODIS data for 2014 was used to estimate the impact of land cover surrounding the ZOTTO tower on concentration measurements. The analysis showed that in the 75% seasonal cumulative footprint the largest area is occupied by bogs, followed (in decreasing order) by larch, mixed, light-coniferous evergreen forests, grassland, and by other classes. Furthermore, analysis of the contributions from individual cells making up a footprint showed that the largest influence on formation of greenhouse gas concentrations as recorded by ZOTTO comes from the types of vegetation growing in the immediate vicinity of the tall tower, namely bogs, mixed forests, and light and dark coniferous forest stands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WMO Greenhouse Gas Bulletin (GHG Bulletin), 2015. no. 12: The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2015.

  2. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. Stocker, Ed., United Kingdom: Cambridge University Press, 2013.

    Google Scholar 

  3. Joos, F. and Spahni, R., Rates of Change in Natural and Anthropogenic Radiative Forcing Over the Past 20,000 Years, PNAS, 2008, vol. 105, issue 5, pp. 1425–1430.

    Article  Google Scholar 

  4. Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J., Bergamaschi, P., Bergmann, D., Blake, D.R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E.L., Houweling, S., Josse, B., Fraser, P.J., Krummel, P.B., Lamarque, J.-F., Langenfelds, R.L., Le Quéré, C., Naik, V., O’Doherty, S., Palmer, P.I., Pison, I., Plummer, D., Poulter, B., Prinn, R.G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D.T., Simpson, I.J., Spahni, R., Steele, L.P., Strode, S.A., Sudo, K., Szopa, S., Van der Werf, G.R., Voulgarakis, A., Weele, M., van Weiss, R.F., Williams, J.E., and Zeng, G., Three Decades of Global Methane Sources and Sinks, Nat. Geosci., 2013, vo.6, no. 10, pp. 813–823.

    Article  Google Scholar 

  5. Betts, R.A., Jones, C.D., Knight, J.R., Keeling, R.F., and Kennedy, J.J., El Niño and a Record CO2 Rise, Nat. Clim. Change, 2016, vol. 6, issue 9, pp. 806–810.

    Article  Google Scholar 

  6. Timokhina, A.V., Prokushkin, A.S., Onuchin, A.A., Panov, A.V., Kofman, G.B., Verkhovets, S.V., and Heimann, M., Long-Term Trend in CO2 in the Surface Atmosphere Over Central Siberia, Russ. Meteorol. Hydrol., 2015, vol. 40, issue 3, pp. 186–190.

    Article  Google Scholar 

  7. Gloor, M., Bakwin, P., Hurst, D., Lock, L., Draxler, R., and Tans, P., What is the Concentration Footprint of a Tall Tower? J. Geophys. Res., 2001, vol. 106, issue 17, pp. 17831–17840.

    Article  Google Scholar 

  8. Timokhina, A.V., Prokushkin, A.S., Onuchin, A.A., Panov, A.V., and Heimann, M., Variability of Ground CO2 concentration in the Middle Taiga Subzone of the Yenisei Region of Siberia, Russ. J. Ecol., 2015, vol. 46, issue 2, pp. 143–151.

    Article  Google Scholar 

  9. Winderlich, J., Setup of a CO2 and CH4 Measurement System in Central Siberia and Modeling of Its Results, Technical Reports 26, Jena: Max Plank Institute Press, 2012.

    Google Scholar 

  10. Chen, B., Zhang, H., Coops, C.N., Fu, D., Worthy, D.E.J., Xu, G., and Black, T.A., Assessing Scalar Concentration Footprint Climatology and Land Surface Impacts on Tall-Tower CO2 Concentration Measurements in the Boreal Forest of Central Saskatchewan, Canada, Theor. Appl. Climatol., 2014, vol. 118, issue 1–2, pp. 115–132.

    Article  Google Scholar 

  11. Timokhina, A.V., Prokushkin, A.S., Panov, A.V., Onuchin, A.A., and Heimann, M., Temporal Variability of CO2 and CH4 Concentration in the Atmosphere of Middle Taiga Ecosystems of Siberia, Izv. Akad. Nauk, 2015, no. 2, pp. 112–121 [in Russian].

  12. Korotkov, I.A., Forest-Vegetation Regionalization of Russia and Republics of the Former USSR, in Carbon in Ecosystems of Forests and Bogs of Russia, V.A. Alekseev and R.A. Berdsi, Eds., Krasnoyarsk: Izd. Vychisl. Tsentra SO RAN, 1994, pp. 29–47 [in Russian].

    Google Scholar 

  13. Lin, J.C., Gerbig, C., Wolfsy, S.C., Andrew, A.E., Daube, B.C., Davis, K.J., and Grainger, C.A., A Near-Field Tool for Simulating the Upstream Influence of Atmospheric Observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) Model, J. Geophys. Res., 2003, vol. 108, issue D16, pp. 4493–4508.

    Article  Google Scholar 

  14. Bartalev, S.A., Egorov, V.A., Ershov, D.V., Isaev, A.S., Loupian, E.A., Plotnikov, D.E., and Uvarov, I.A., Mapping of Russia’s Vegetation Cover Using MODIS Satellite Spectroradiometer Data, Sovremennye Problemy Distantsionnogo Zonditovaniya Zemli iz Kosmosa, 2011, vol. 8, no. 4, pp. 285–302 [in Russian].

    Google Scholar 

  15. Kim J. Kim H.M. Cho C.-H. Boo K.-O. Jacobson A.R. Sasakawa M. Machida T. Arshinov M. and Fedoseev N. Impact of Siberian Observations on the Optimization of Surface CO2 Flux Atmos. Chem. Phys. 2017 vol. 17 issue 4 pp. 2881–2899.

    Article  Google Scholar 

  16. Röser C. Montagnani L. Schulze E.-D. Mollicone D. Kolle O. Meroni M. Papale D. Marchesini L.B. Federici S. and Valentini R. Net CO2 Exchange Rates in Three Different Successional Stages of the “Dark Taiga” of Central Siberia Tellus 2002 vol. 54B no. 5 pp. 642–654.

    Google Scholar 

  17. Tchebukova N.M. Vygodskaya N.N. Arneth A. Marchesini L.B. Kurbatova Yu.A. Parfenova E.I. Valentini R. Verkhovets S.V. Vaganov E.A. and Schuze E.-D. Energy and Mass Exchange and the Productivity of Main Siberian Ecosystems (From Eddy Covariance Measurements. 2. Carbon Exchange and Productivity Biol. Bull. 2015 vol. 42 issue 6 pp. 579–588.

    Article  Google Scholar 

  18. Peregon A. Maksyutov S. and Yamagata Y. An Image-Based Inventory of the Spatial Structure of West Siberian Wetlands Environ. Res. Lett. 2009 vol. 4 no. 4 pp. 45015–45021.

    Article  Google Scholar 

  19. Sabrekov A.F. Glagolev M.V. Kleptsova I.E. Machida T. and Maksyutov S.S. Methane Emission From Mires of the West Siberian Taiga Eurasian Soil Sci. 2013 vol. 46 issue 12 pp. 1182–1193.

    Article  Google Scholar 

  20. Klimchenko A.V. Verkhovets S.V. Slinkina O.A. and Koshurnikova N.N. Reserves of Heavy Slash in the Middle-Taiga Ecosystems Along Yenisei Siberia Geogr. Prir. Resur. 2011 no. 2 pp. 91–97 [in Russian].

  21. Konovalov I.B. Berezin E.V. Ciais P. Broquet G. Beekmann M. Handji-Lazaro J. Clerbaux C. Andreae M.O. Kaiser J.W. and Schulze E.-D. Constraining CO2 Emissions From Open Biomass Burning by Satellite Observations of Co-emitted Species: A Method and Its Application to Wildfires in Siberia Atmos. Chem. Phys. 2014 vol. 14 issue 19 pp. 10383–10410.

    Article  Google Scholar 

  22. Antamoshkina O.A. and Korets M.A. Vegetation Monitoring Within the Zotto Tall Tower Coverage Area Using Remote Sensing Data Vestn. Sib. Aerokosm. Inst. 2015 vol. 16 no. 4 pp. 814–818 [in Russian].

    Google Scholar 

  23. State Report on the State and Use of Mineral Resources of the Russian Federation in 2015. 2017. URL: http://www.mnr.gov.ru/docs/gosudarstvennye_doklady/ (Accessed April 13 2017) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Urban, A. S. Prokushkin, M. A. Korets, A. V. Panov, Ch. Gerbig or M. Heimann.

Additional information

The work was financially supported by the Government of the Krasnoyarsk krai and the Krasnoyarsk krai Science Foundation as part of a scientific project No. 18-45-243003 “Forests Breath of Siberia: regional analysis of drains and sources of carbon in the atmosphere in the ecosystems of key bioclimatic zones of the Yenisei river basin” and by the Russian Science Foundation (14-24-00113) and the Russian Foundation for Basic Research (18-05- 60203 — Arctic).

Russian Text © The Author(s), 2019, published in Geografiya i Prirodnye Resursy, 2019, Vol. 40, No. 3, pp. 32–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urban, A.V., Prokushkin, A.S., Korets, M.A. et al. Influence of the Underlying Surface on Greenhouse Gas Concentrations in the Atmosphere Over Central Siberia. Geogr. Nat. Resour. 40, 221–229 (2019). https://doi.org/10.1134/S1875372819030041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1875372819030041

Keywords

Navigation