Skip to main content
Log in

Arp2/3 Is Required for Axonal Arbor Terminal Retraction in Cerebellar Granule Neurons

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Although selective pruning of subsets of branches is a key step for axonal remodeling, the underlying mechanisms have not fully elucidated. We have reported that the retraction rate of axonal arbor is higher in the terminals, where less kinesin is sorted, and inhibiting actin turnover by treatment with latrunculin A prevented retraction in such terminals. In the present study, we investigated the effects of pharmacological inhibitors for the regulators of actin polymerization/destabilization on the elongation and retraction of arbor terminals in cerebellar granule neurons. Inhibition of an actin nucleator Arp2/3 with CK-666 or CK-869 inhibited the retraction of arbor terminals. However, inhibitors for PAK/LIMK, upstream signaling of ADF/cofilin, reduced the elongation rate but not the retraction rate. A photoconversion analysis revealed that turnover of F-actin at the tip of the axonal terminal is faster in the presence of the Arp2/3 inhibitor compared with the control and neurons treated with the LIMK inhibitor. Our results indicate the important role of Arp2/3 for the retraction of axonal arbor terminals in cerebellar granule neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Pollard, T.D., Blanchoin, L., and Mullins, R.D., J. Cell Sci., 2001, vol. 114, pp. 3–4.

    CAS  PubMed  Google Scholar 

  2. Pak, C.W., Flynn, K.C., and Bamburg, J.R., Nat. Rev. Neurosci., 2008, vol. 9, pp. 136–147.

    Article  CAS  Google Scholar 

  3. Goley, E.D. and Welch, M.D., Nat. Rev. Mol. Cell. Biol., 2006, vol. 7, pp. 713–726.

    Article  CAS  Google Scholar 

  4. Takenawa, T. and Miki, H., J. Cell Sci., 2001, vol. 114, pp. 1801–1809.

    CAS  PubMed  Google Scholar 

  5. Korobova, F. and Svitkina, T., Mol. Biol. Cell., 2008, vol. 19, pp. 1561–1574.

    Article  CAS  Google Scholar 

  6. San Miguel-Ruiz J.E. and Letourneau, P.C., J. Neurosci., 2014, vol. 34, pp. 5895–5908.

    Article  Google Scholar 

  7. Strasser, G.A., Rahim, N.A., Van der Waal K.E., Gertler, F.B., and Lanier, L.M., Neuron, 2004, vol. 43, pp. 81–94.

    Article  CAS  Google Scholar 

  8. Pinyol, R., Haeckel, A., Ritter, A., Qualmann, B., and Kessels, M.M., PLoS One, 2007, vol. 2, e400.

    Article  Google Scholar 

  9. Oser, M. and Condeelis, J., J. Cell. Biochem., 2009, vol. 108, pp. 1252–1262.

    Article  CAS  Google Scholar 

  10. Bravo-Cordero, J.J., Magalhaes, M.A., Eddy, R.J., Hodgson, L., and Condeelis, J., Nat. Rev. Mol. Cell. Biol., 2013, vol. 14, pp. 405–415.

    Article  CAS  Google Scholar 

  11. Kovaleva, T.F., Maksimova, N.S., Zhukov, I.Y., Per-shin, V.I., Mukhina, I.V., and Gainullin, M.R., Neurochem. J., 2019, vol. 13, pp. 11–19.

    Article  Google Scholar 

  12. Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E., and Mizuno, K., Nature, 1998, vol. 393, pp. 809–812.

    Article  CAS  Google Scholar 

  13. Aizawa, H., Wakatsuki, S., Ishii, A., Moriyama, K., Sasaki, Y., Ohashi, K., Sekine-Aizawa, Y., Sehara-Fujisawa, A., Mizuno, K., Goshima, Y., and Yahara, I., Nat. Neurosci., 2001, vol. 4, pp. 367–373.

    Article  CAS  Google Scholar 

  14. Ng, J. and Luo, L., Neuron, 2004, vol. 44, pp. 779–793.

    Article  CAS  Google Scholar 

  15. Endo, M., Ohashi, K., Sasaki, Y., Goshima,Y., Niwa, R., Uemura, T., and Mizuno, K., J. Neurosci., 2003, vol. 23, pp. 2527–2537.

    Article  CAS  Google Scholar 

  16. Dong, Q., Ji, Y.S., Cai, C., and Chen, Z.Y., J. Biol. Chem., 2012, vol. 287, pp. 41720–41731.

    Article  CAS  Google Scholar 

  17. Luo, L. and O’Leary, D.D., Annu. Rev. Neurosci., 2005, vol. 28, pp. 127–156.

    Article  CAS  Google Scholar 

  18. Gallo, G., Yee, H.F., and Letourneau, P.C., Jr., J. Cell Biol., 2002, vol. 158, pp. 1219–1228.

    Article  CAS  Google Scholar 

  19. Gallo, G., J. Cell Sci., 2006, vol. 119, pp. 3413–3423.

    Article  CAS  Google Scholar 

  20. Ruthel, G. and Hollenbeck, P.J., J. Neurosci., 2000, vol. 20, pp. 2266–2274.

    Article  CAS  Google Scholar 

  21. Hutchins, B.I. and Kalil, K., J. Neurosci., 2008, vol. 28, pp. 143–153.

    Article  CAS  Google Scholar 

  22. Nakata, T. and Hirokawa, N., J. Cell Biol., 2003, vol. 162, pp. 1045–1055.

    Article  CAS  Google Scholar 

  23. Jacobson, C., Schnapp, B., and Banker, G.A., Neuron, 2006, vol. 49, pp. 797–804.

    Article  CAS  Google Scholar 

  24. Seno, T., Ikeno, T., Mennya, K., Kurishita, M., Sakae, N., Sato, M., Takada, H., and Konishi, Y., J. Cell Sci. 2016, vol. 129, pp. 3499–3510.

    Article  CAS  Google Scholar 

  25. Konishi, Y., Stegmüller, J., Matsuda, T., Bonni, S., and Bonni, A., Science, 2004, vol. 303, pp. 1026–1030.

    Article  CAS  Google Scholar 

  26. Kubota, K., Seno, T., and Konishi, Y., Brain Res., 2013, vol. 1539, pp. 15–23.

    Article  CAS  Google Scholar 

  27. Konishi, Y. and Setou, M., Nat. Neurosci., 2009, vol. 12, pp. 559–567.

    Article  CAS  Google Scholar 

  28. Mckinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W., and Looger, L.L., Nat. Methods, 2009, vol. 6, pp. 131–133.

    Article  CAS  Google Scholar 

  29. Inami, Y., Omura, M., Kubota, K., and Konishi, Y., Brain Res., 2018, vol. 1690, pp. 51–60.

    Article  CAS  Google Scholar 

  30. Kanchanawong, P., Shtengel, G., Pasapera, A.M., Ramko, E.B., Davidson, M.W., Hess H.F., and Waterman C.M., Nature, 2010, vol. 468, pp. 580–584.

    Article  CAS  Google Scholar 

  31. Hetrick, B., Han, M.S., Helgeson, L.A., and Nolen, B.J., Chem. Biol., 2013, vol. 20, pp. 701–712.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Michael Davidson for providing the constructs used in this study.

Funding

This study was funded by grants from the JSPS KAKENHI Grant (no. 17K07107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Konishi.

Ethics declarations

Conflict of interest. The authors declare no conflicts of interest associated with this manuscript.

Ethical approval. All animals were treated according to the ethical guidelines from the Central Institute for Experimental Animals (CIEA, Japan). The experimental protocols were approved by the animal experiment committee of the University of Fukui.

Additional information

Abbreviations: Arp, actin-related protein; PAK, p21-activated kinase; LIMK, LIM kinase; ADF, actin-depolymerizing factor; CGN, cerebellar granule neuron; DMSO; dimethyl sulfoxide; MEM, minimal essential medium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeno, T., Konishi, Y. Arp2/3 Is Required for Axonal Arbor Terminal Retraction in Cerebellar Granule Neurons. Neurochem. J. 14, 32–36 (2020). https://doi.org/10.1134/S1819712420010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712420010109

Keywords:

Navigation