Skip to main content
Log in

Families of invariant tori in KAM theory: Interplay of integer characteristics

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The purpose of this brief note is twofold. First, we summarize in a very concise form the principal information on Whitney smooth families of quasi-periodic invariant tori in various contexts of KAM theory. Our second goal is to attract (via an informal discussion and a simple example) the experts’ attention to the peculiarities of the so-called excitation of elliptic normal modes in the reversible context 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sevryuk, M. B., Translation of the V. I.Arnold Paper “From Superpositions to KAM Theory”, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 734–744.

    Article  MathSciNet  MATH  Google Scholar 

  2. de la Llave, R., A Tutorial on KAM Theory, in Smooth Ergodic Theory and Its Applications: Proc. of the AMS Summer Research Institute (Univ. of Washington, Seattle,Wash., 1999), A. Katok, R. de la Llave, Ya. Pesin, H. Weiss (Eds.), Proc. Sympos. Pure Math., vol. 69, Providence,R.I.: AMS, 2001, pp. 175–292.

    Chapter  Google Scholar 

  3. Arnol’d, V. I., Kozlov, V.V., and Neǐshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.

    Google Scholar 

  4. Broer, H.W. and Sevryuk, M.B., KAM Theory: Quasi-Periodicity in Dynamical Systems, in Handbook of Dynamical Systems: Vol. 3, H.W. Broer, B. Hasselblatt, F. Takens (Eds.), Amsterdam: Elsevier, 2010, pp. 249–344.

    Chapter  Google Scholar 

  5. Dumas, H. S., The KAM Story: A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov–Arnold–Moser Theory, Hackensack, N.J.: World Sci., 2014.

  6. Broer, H. W., Huitema, G.B., and Takens, F., Unfoldings of Quasi-Periodic Tori, Mem. Amer. Math. Soc., 1990, vol. 83, no. 421, pp. 1–81.

    MathSciNet  MATH  Google Scholar 

  7. Broer, H. W. and Huitema, G.B., Unfoldings of Quasi-Periodic Tori in Reversible Systems, J. Dynam. Differential Equations, 1995, vol. 7, no. 1, pp. 191–212.

    Article  MathSciNet  MATH  Google Scholar 

  8. Sevryuk, M. B., The Iteration-Approximation Decoupling in the Reversible KAM Theory, Chaos, 1995, vol. 5, no. 3, pp. 552–565.

    Article  MathSciNet  MATH  Google Scholar 

  9. Broer, H. W., Huitema, G. B., and Sevryuk, M.B., Families of Quasi-Periodic Motions in Dynamical Systems Depending on Parameters, in Nonlinear Dynamical Systems and Chaos, Progr. Nonlinear Differential Equations Appl., vol. 19, Basel: Birkhäuser, 1996, pp. 171–211.

    Chapter  Google Scholar 

  10. Broer, H.W., Huitema, G.B., and Sevryuk, M.B., Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos, Lecture Notes in Math., vol. 1645, Berlin: Springer, 1996.

  11. Sevryuk, M. B., Partial Preservation of Frequencies in KAM Theory, Nonlinearity, 2006, vol. 19, no. 5, pp. 1099–1140.

    Article  MathSciNet  MATH  Google Scholar 

  12. Sevryuk, M. B., Partial Preservation of Frequencies and Floquet Exponents in KAM Theory, Proc. Steklov Inst. Math., 2007, vol. 259, pp. 167–195; see also: Tr. Mat. Inst. Steklova, 2007, vol. 259, pp. 174–202.

    Article  MathSciNet  MATH  Google Scholar 

  13. Broer, H. W., Hoo, J., and Naudot, V., Normal Linear Stability of Quasi-Periodic Tori, J. Differential Equations, 2007, vol. 232, no. 2, pp. 355–418.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sevryuk, M. B., Whitney Smooth Families of Invariant Tori within the Reversible Context 2 of KAM Theory, Regul. Chaotic Dyn., 2016, vol. 21, no. 6, pp. 599–620.

    Article  MathSciNet  MATH  Google Scholar 

  15. Sevryuk, M. B., Partial Preservation of Frequencies and Floquet Exponents of Invariant Tori in the Reversible KAM Context 2, arXiv:1709.02333 (2017), to appear in J. Math. Sci. (N. Y.).

    Google Scholar 

  16. Wagener, F., A Parametrised Version of Moser’s Modifying Terms Theorem, Discrete Contin. Dyn. Syst. Ser. S, 2010, vol. 3, no. 4, pp. 719–768.

    Article  MathSciNet  MATH  Google Scholar 

  17. Politi, A., Oppo, G. L., and Badii, R., Coexistence of Conservative and Dissipative Behavior in Reversible Dynamical Systems, Phys. Rev. A, 1986, vol. 33, no. 6, pp. 4055–4060.

    Article  Google Scholar 

  18. Quispel, G.R.W. and Roberts, J.A.G., Conservative and Dissipative Behaviour in Reversible Dynamical Systems, Phys. Lett. A, 1989, vol. 135, nos. 6–7, pp. 337–342.

    Article  MathSciNet  Google Scholar 

  19. Wagener, F., A Note on Gevrey Regular KAM Theory and the Inverse Approximation Lemma, Dyn. Syst., 2003, vol. 18, no. 2, pp. 159–163.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sevryuk, M. B., The Classical KAM Theory at the Dawn of the Twenty-First Century, Mosc. Math. J., 2003, vol. 3, no. 3, pp. 1113–1144.

    MathSciNet  MATH  Google Scholar 

  21. Broer, H. W., Ciocci, M.C., Hanßmann, H., and Vanderbauwhede, A., Quasi-Periodic Stability of Normally Resonant Tori, Phys. D, 2009, vol. 238, no. 3, pp. 309–318.

    Article  MathSciNet  MATH  Google Scholar 

  22. Treshchëv, D.V., The Mechanism of Destruction of Resonant Tori in Hamiltonian Systems, Math. USSR Sb., 1991, vol. 68, no. 1, pp. 181–203; see also: Mat. Sb., 1989, vol. 180, no. 10, pp. 1325–1346.

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y. and Yi, Y., On Poincaré–Treshchëv Tori in Hamiltonian Systems, in EQUADIFF 2003: Proc. of the Conference held at Limburgs Universitair Centrum, Hasselt/Diepenbeek, 2003, F. Dumortier, H. Broer, J. Mawhin, A. Vanderbauwhede, S.V. Lunel (Eds.), Hackensack,N.J.:World Sci., 2005, pp. 136–151.

    Chapter  Google Scholar 

  24. Cheng, Ch.-Q., Birkhoff–Kolmogorov–Arnold–Moser Tori in Convex Hamiltonian Systems, Comm. Math. Phys., 1996, vol. 177, no. 3, pp. 529–559.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Sh. and Cheng, Ch., Birkhoff Lower-Dimensional Tori in Hamiltonian Systems, Chinese Sci. Bull., 1997, vol. 42, no. 22, pp. 1866–1870.

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, B., On Lower Dimensional Invariant Tori in Reversible Systems, J. Differential Equations, 2001, vol. 176, no. 1, pp. 158–194.

    Article  MathSciNet  MATH  Google Scholar 

  27. Wei, B., Perturbations of Lower Dimensional Tori in the Resonant Zone for Reversible Systems, J. Math. Anal. Appl., 2001, vol. 253, no. 2, pp. 558–577.

    Article  MathSciNet  MATH  Google Scholar 

  28. Devaney, R. L., Reversible Diffeomorphisms and Flows, Trans. Amer. Math. Soc., 1976, vol. 218, pp. 89–113.

    Article  MathSciNet  MATH  Google Scholar 

  29. Arnold, V. I., On the Stability of an Equilibrium of a Hamiltonian System of Ordinary Differential Equations in the General Elliptic Case, Soviet Math. Dokl., 1961, vol. 2, no. 2, pp. 247–249; see also: Dokl. Akad. Nauk SSSR, 1961, vol. 137, no. 2, pp. 255–257.

    Google Scholar 

  30. Arnold, V. I., On the Classical Perturbation Theory and the Stability Problem for Planetary Systems, Soviet Math. Dokl., 1962, vol. 3, no. 4, pp. 1008–1012; see also: Dokl. Akad. Nauk SSSR, 1962, vol. 145, no. 3, pp. 487–490.

    Google Scholar 

  31. Arnold, V. I., Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics, Russian Math. Surveys, 1963, vol. 18, no. 6, pp. 85–191; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 6, pp. 91–192.

    Article  MathSciNet  Google Scholar 

  32. Féjoz, J., Démonstration du “Théorème d’Arnold” sur la stabilité du système planétaire (d’après Herman), Ergodic Theory Dynam. Systems, 2004, vol. 24, no. 5, pp. 1521–1582.

    Article  MathSciNet  MATH  Google Scholar 

  33. Chierchia, L. and Pusateri, F., Analytic Lagrangian Tori for the Planetary Many-Body Problem, Ergodic Theory Dynam. Systems, 2009, vol. 29, no. 3, pp. 849–873.

    Article  MathSciNet  MATH  Google Scholar 

  34. Chierchia, L. and Pinzari, G., Properly-Degenerate KAM Theory (Following V. I. Arnold), Discrete Contin. Dyn. Syst. Ser. S, 2010, vol. 3, no. 4, pp. 545–578.

    Article  MathSciNet  MATH  Google Scholar 

  35. Chierchia, L. and Pinzari, G., The Planetary N-Body Problem: Symplectic Foliation, Reductions and Invariant Tori, Invent. Math., 2011, vol. 186, no. 1, pp. 1–77.

    Article  MATH  Google Scholar 

  36. Féjoz, J., On “Arnold’s Theorem” on the Stability of the Solar System, Discrete Contin. Dyn. Syst., 2013, vol. 33, no. 8, pp. 3555–3565.

    Article  MathSciNet  MATH  Google Scholar 

  37. Pinzari, G., Global Kolmogorov Tori in the Planetary N-Body Problem. Announcement of Result, Electron. Res. Announc. Math. Sci., 2015, vol. 22, pp. 55–75.

    MathSciNet  MATH  Google Scholar 

  38. Pinzari, G., Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem, arXiv:1501.04470 (2016), to appear in Mem. Amer. Math. Soc.

    Google Scholar 

  39. Chierchia, L. and Pinzari, G., Planetary Birkhoff Normal Forms, J. Mod. Dyn., 2011, vol. 5, no. 4, pp. 623–664.

    Google Scholar 

  40. Pinzari, G., Aspects of the Planetary Birkhoff Normal Form, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 860–906.

    Article  MathSciNet  MATH  Google Scholar 

  41. Sevryuk, M. B., On the Dimensions of Invariant Tori in KAM Theory, in Mathematical Methods in Mechanics, Moscow: Moscow State University Press, 1990, pp. 82–88 (Russian).

    Google Scholar 

  42. Sevryuk, M. B., Excitation of Elliptic Normal Modes of Invariant Tori in Hamiltonian Systems, in Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, vol. 180, Providence,R.I.: AMS, 1997, pp. 209–218.

    MathSciNet  MATH  Google Scholar 

  43. Sevryuk, M. B., Excitation of Elliptic Normal Modes of Invariant Tori in Volume Preserving Flows, in Global Analysis of Dynamical Systems, Bristol: Inst. Phys., 2001, pp. 339–352.

    Google Scholar 

  44. Sevryuk, M. B., The Finite-Dimensional Reversible KAM Theory, Phys. D, 1998, vol. 112, nos. 1–2, pp. 132–147.

    Article  MathSciNet  MATH  Google Scholar 

  45. Jorba, À. and Villanueva, J., On the Normal Behaviour of Partially Elliptic Lower-Dimensional Tori of Hamiltonian Systems, Nonlinearity, 1997, vol. 10, no. 4, pp. 783–822.

    Article  MathSciNet  MATH  Google Scholar 

  46. Jorba, À. and Villanueva, J., The Fine Geometry of the Cantor Families of Invariant Tori in Hamiltonian Systems, in European Congress of Mathematics (Barcelona, 2000): Vol.2, Progr. Math., vol. 202, Basel: Birkhäuser, 2001, pp. 557–564.

    Chapter  Google Scholar 

  47. Sevryuk, M. B., Invariant Tori of Reversible Systems of Intermediate Dimensions, Russian Acad. Sci. Dokl. Math., 1993, vol. 47, no. 1, pp. 129–133; see also: Dokl. Akad. Nauk, 1993, vol. 328, no. 5, pp. 550–553.

    MathSciNet  MATH  Google Scholar 

  48. Sevryuk, M. B., Invariant Tori of Intermediate Dimensions in Hamiltonian Systems, Regul. Chaotic Dyn., 1998, vol. 3, no. 1, pp. 39–48.

    MathSciNet  MATH  Google Scholar 

  49. Bruno, A.D., Local Methods in Nonlinear Differential Equations, Springer Ser. Soviet Math., Berlin: Springer, 1989.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail B. Sevryuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevryuk, M.B. Families of invariant tori in KAM theory: Interplay of integer characteristics. Regul. Chaot. Dyn. 22, 603–615 (2017). https://doi.org/10.1134/S156035471706003X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156035471706003X

Keywords

MSC2010

Navigation