Skip to main content
Log in

Remarks on integrable systems

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The problem of integrability conditions for systems of differential equations is discussed. Darboux’s classical results on the integrability of linear non-autonomous systems with an incomplete set of particular solutions are generalized. Special attention is paid to linear Hamiltonian systems. The paper discusses the general problem of integrability of the systems of autonomous differential equations in an n-dimensional space, which admit the algebra of symmetry fields of dimension ⩽ n. Using a method due to Liouville, this problem is reduced to investigating the integrability conditions for Hamiltonian systems with Hamiltonians linear in the momenta in phase space of dimension that is twice as large. In conclusion, the integrability of an autonomous system in three-dimensional space with two independent non-trivial symmetry fields is proved. It should be emphasized that no additional conditions are imposed on these fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaplansky, I., An Introduction to Differential Algebra, Paris: Hermann, 1957.

    MATH  Google Scholar 

  2. Kozlov, V.V., The Euler — Jacobi — Lie Integrability Theorem, Regul. Chaotic Dyn., 2013, vol. 18, no. 4, pp. 329–343.

    Article  MATH  MathSciNet  Google Scholar 

  3. Olver, P. J., Applications of Lie Groups to Differential Equations, Grad. Texts in Math., vol. 107, New York: Springer, 1986.

    Book  MATH  Google Scholar 

  4. Borisov, A.V. and Mamaev, I. S., Modern Methods of the Theory of Integrable Systems, Moscow: R&C Dynamics, ICS, 2003 (Russian).

    MATH  Google Scholar 

  5. Darboux, G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal: T. 1, Paris: Gauthier-Villars, 1914.

    Google Scholar 

  6. Kozlov, V.V., General Theory of Vortices, Encyclopaedia Math. Sci., vol. 67, Berlin: Springer, 2003.

    MATH  Google Scholar 

  7. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Lie algebras in vortex dynamics and celestial mechanics: 4, Regul. Chaotic Dyn., 1999, vol. 4, no. 1, pp. 23–50.

    Article  MATH  MathSciNet  Google Scholar 

  8. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Multiparticle Systems. The Algebra of Integrals and Integrable Cases, Regul. Chaotic Dyn., 2009, vol. 14, no. 1, pp. 18–41.

    Article  MATH  MathSciNet  Google Scholar 

  9. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Superintegrable system on a sphere with the integral of higher degree, Regul. Chaotic Dyn., 2009, vol. 14, no. 6, pp. 615–620.

    Article  MATH  MathSciNet  Google Scholar 

  10. Borisov, A.V. and Mamaev, I. S., Superintegrable systems on a sphere, Regul. Chaotic Dyn., 2005, vol. 10, no. 3, pp. 257–266.

    Article  MATH  MathSciNet  Google Scholar 

  11. Borisov, A.V. and Mamaev, I. S., On the problem of motion of vortex sources on a plane, Regul. Chaotic Dyn., 2006, vol. 11, no. 4, pp. 455–466.

    Article  MATH  MathSciNet  Google Scholar 

  12. Borisov, A.V. and Pavlov, A. E., Dynamics and statics of vortices on a plane and a sphere: 1, Regul. Chaotic Dyn., 1998, vol. 3, no. 1, pp. 28–38.

    Article  MATH  MathSciNet  Google Scholar 

  13. Whittaker, E.T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., New York: Cambridge Univ. Press, 1959.

    Google Scholar 

  14. Nekhoroshev, N.N., Action-Angle Variables and Their Generalization, Trans. Moscow Math. Soc., 1972, vol. 26, pp. 180–198; see also: Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 181–198 (Russian).

    Google Scholar 

  15. Mishchenko, A. S. and Fomenko, A. T., Generalized Liouville Method of Integration of Hamiltonian Systems, Funct. Anal. Appl., 1978, vol. 12, no. 2, pp. 113–121; see also: Funktsional. Anal. i Prilozhen., 1978, vol. 12, no. 2, pp. 46–56 (Russian).

    Article  MATH  Google Scholar 

  16. Brailov, A. V., Complete Integrability of Some Geodesic Flows and Integrable Systems with Noncommuting Integrals, Dokl. Akad. Nauk SSSR, 1983, vol. 271, no. 2, pp. 273–276 (Russian).

    MathSciNet  Google Scholar 

  17. Stekloff, W., Application du théor`eme généralisé de Jacobi au probl`eme de Jacobi — Lie, C. R. Acad. Sci. Paris, 1909, vol. 148, pp. 465–468.

    MATH  Google Scholar 

  18. Kozlov, V.V., An Extended Hamilton — JacobiMethod, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 580–596.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kozlov, V.V., Symmetries, Topology, and Resonances in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb. (3), vol. 31, Berlin: Springer, 1996.

    Book  Google Scholar 

  20. Kozlov, V.V., Remarks on a Lie Theorem on the Exact Integrability of Differential Equations, Differ. Equ., 2005, vol. 41, no. 4, pp. 588–590; see also: Differ. Uravn., 2005, vol. 41, no. 4, pp. 553–555 (Russian).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery V. Kozlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, V.V. Remarks on integrable systems. Regul. Chaot. Dyn. 19, 145–161 (2014). https://doi.org/10.1134/S1560354714020014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354714020014

MSC2010 numbers

Keywords

Navigation