Skip to main content
Log in

Partial integrability of Hamiltonian systems with homogeneous potential

  • Special Issue: Valery Vasilievich Kozlov-60
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this paper we consider systems with n degrees of freedom given by the natural Hamiltonian function of the form

$$ H = \frac{1} {2}p^T Mp + V(q), $$

where q = (q 1, …, q n ) ∈ ℂn, p = (p 1, …, p n ) ∈ ℂn, are the canonical coordinates and momenta, M is a symmetric non-singular matrix, and V (q) is a homogeneous function of degree k ∈ ℤ*. We assume that the system admits 1 ⩽ m < n independent and commuting first integrals F 1, … F m . Our main results give easily computable and effective necessary conditions for the existence of one more additional first integral F m+1 such that all integrals F 1, … F m+1 are independent and pairwise commute. These conditions are derived from an analysis of the differential Galois group of variational equations along a particular solution of the system. We apply our result analysing the partial integrability of a certain n body problem on a line and the planar three body problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I., Mathematical Methods of Classical Mechanics, New York: Springer, 1978.

    MATH  Google Scholar 

  2. Boucher, D., Sur les équations différentielles linéaires paramétrées, une application aux systèmes hamiltoniens, Ph.D. Thesis, Université de Limoges, France, 2000

    Google Scholar 

  3. Boucher, D. and Weil, J.-A., Application of J.-J. Morales and J.-P. Ramis’ Theorem to Test the Non-complete Integrability of the Planar Three-body Problem. In: Fauvet, F. et al. (Eds.), From Combinatorics to Dynamical Systems, Journées de calcul formel en l’honneur de Jean Thomann, Marseille, France, March 22–23, 2002, Berlin: de Gruyter. IRMA Lect. Math. Theor. Phys., vol. 3, 2003, pp. 163–177.

    Google Scholar 

  4. Duval, G. and Maciejewski, A.J., Jordan Obstruction to the Integrability of Hamiltonian Systems with Homogeneous Potentials, Annales de l’Institut Fourier, 2009, vol. 59, no. 7, pp. 2839–2890.

    MATH  MathSciNet  Google Scholar 

  5. Iwasaki, K., Kimura, H., Shimomura, S., and Yoshida, M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, E16. Braunschweig: Friedr. Vieweg & Sohn, 1991.

    MATH  Google Scholar 

  6. Kimura, T., On Riemann’s Equations Which Are Solvable by Quadratures, Funkcial. Ekvac., 1969/1970, vol. 12, pp. 269–281.

    MATH  MathSciNet  Google Scholar 

  7. Maciejewski, A.J., Przybylska, M., and Yoshida, H., Necessary Conditions for Super-integrability of Hamiltonian Systems, Phys. Lett. A, 2008, vol. 372, no. 34, pp. 5581–5587.

    Article  MathSciNet  Google Scholar 

  8. Maciejewski, A.J., Przybylska, M., and Yoshida, H., Necessary Conditions for Partial Integrability of Hamiltonian Systems with Homogeneous Potential, Nonlinearity, 2010, submitted.

  9. Miščenko, A.S. and Fomenko, A.T., A generalized Liouville method for the integration of Hamiltonian systems, Funkcional. Anal. i Priložen., 1978, vol. 12, no. 2, pp. 46–56.

    Google Scholar 

  10. Morales-Ruiz, J.J. and Ramis, J.P., Galoisian Obstructions to Integrability of Hamiltonian Systems. I, Methods Appl. Anal., 2001, vol. 8, no. 1, pp. 33–95.

    MATH  MathSciNet  Google Scholar 

  11. Morales-Ruiz, J.J. and Ramis, J.P., A Note on the Non-integrability of Some Hamiltonian Systems with a Homogeneous Potential, Methods Appl. Anal., 2001, vol. 8, no. 1, pp. 113–120.

    MATH  MathSciNet  Google Scholar 

  12. Morales-Ruiz, J.J. and Simon, S. On the Meromorphic Non-integrability of Some N-body Problems, Discrete Contin. Dyn. Syst., 2009, vol. 24, no. 4, pp. 1225–1273.

    Article  MATH  MathSciNet  Google Scholar 

  13. Simon, S., On the Meromorphic Non-integrability of Some Problems in Celestial Mechanics, Ph.D. thesis, Universitat de Barcelona, Spain, 2007.

    Google Scholar 

  14. Tsygvintsev, A., La non-intégrabilité méromorphe du problème plan des trois corps, C. R. Acad. Sci. Paris Sér. I Math., 2000, vol. 331, no. 3, pp. 241–244.

    MATH  MathSciNet  Google Scholar 

  15. Tsygvintsev, A., The Meromorphic Non-integrability of the Three-body Problem, J. Reine Angew. Math., 2001, vol. 537, pp. 127–149.

    MATH  MathSciNet  Google Scholar 

  16. Tsygvintsev, A., Sur l’absence d’une intégrale première méromorphe supplémentaire dans le problème plan des trois corps, C. R. Acad. Sci. Paris Sér. I Math., 2001, vol. 333, no. 2, pp. 125–128.

    MATH  MathSciNet  Google Scholar 

  17. Tsygvintsev, A.V., Non-existence of New Meromorphic First Integrals in the Planar Three-body Problem, Celest. Mech. Dyn. Astron., 2003, vol. 86, no. 3, pp. 237–247.

    Article  MATH  MathSciNet  Google Scholar 

  18. Tsygvintsev, A.V., On Some Exceptional Cases in the Integrability of the Three-body Problem, Celest. Mech. Dyn. Astron., 2007, vol. 99, no. 1, pp. 23–29.

    Article  MATH  MathSciNet  Google Scholar 

  19. Umeno, K., Erratum: “Galois extensions in Kowalevski exponents and nonintegrability of nonlinear lattices”, Phys. Lett. A, 1994, vol. 193, nos. 5–6, 500.

    MathSciNet  Google Scholar 

  20. Whittaker, E.T., A Treatise on the Analytical Dynamics of Particle and Rigid Bodies with an Introduction to the Problem of Three Bodies, Fourth edition, London: Cambridge University Press, 1965

    Google Scholar 

  21. Yoshida, H., A Criterion for the Nonexistence of an Additional Analytic Integral in Hamiltonian Systems with n Degrees of Freedom, Phys. Lett. A, 1989, vol. 141, nos. 3–4, pp. 108–112.

    Article  MathSciNet  Google Scholar 

  22. Ziglin, S.L., On Involutive Integrals of Groups of Linear Symplectic Transformations and Natural Mechanical Systems with Homogeneous Potential, Funktsional. Anal. i Prilozhen., 2000, vol. 34, no. 3, pp. 26–36.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Maciejewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciejewski, A.J., Przybylska, M. Partial integrability of Hamiltonian systems with homogeneous potential. Regul. Chaot. Dyn. 15, 551–563 (2010). https://doi.org/10.1134/S1560354710040106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354710040106

MSC2000 numbers

Key words

Navigation