Skip to main content
Log in

General solutions of integrable cosmological models with non-minimal coupling

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We study the integrable model with minimally and non-minimally coupled scalar fields and the correspondence of their general solutions. Using the model with a minimally coupled scalar field and a the constant potential as an example we demonstrate the difference between the general solutions of the corresponding models in the Jordan and the Einstein frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. A. R. Ade et al. (Planck Collab.), “Planck 2015 results. XX. Constraints on inflation,” arXiv:1502.02114.

  2. N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar fields in de sitter space-time,” Ann. Poincare Phys. Theor. A 9, 109 (1968)

    MathSciNet  MATH  Google Scholar 

  3. E. A. Tagirov, “Consequences of field quantization in de Sitter type cosmological models,” Ann. Phys. 76, 561 (1973).

    Article  ADS  Google Scholar 

  4. C. G. Callan, S. R. Coleman, and R. Jackiw, “A new improved energy-momentum tensor,” Ann. Phys. 59, 42 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. B. L. Spokoiny, “Inflation and generation of perturbations in broken symmetric theory of gravity,” Phys. Lett. B 147, 39–43 (1984)

    Article  ADS  Google Scholar 

  6. T. Futamase and K.-i.Maeda, “Chaotic inflationary scenario in models having nonminimal coupling with curvature,” Phys. Rev. D 39, 399–404 (1989)

    Article  ADS  Google Scholar 

  7. R. Fakir and W. G. Unruh, “Improvement on cosmological chaotic inflation through nonminimal coupling,” Phys. Rev. D 41, 1783–1791 (1990)

    Article  ADS  Google Scholar 

  8. M. V. Libanov, V. A. Rubakov, and P. G. Tinyakov, “Cosmology with nonminimal scalar field: graceful entrance into inflation,” Phys. Lett. B 442, 63 (1998); arXiv:hep-ph/9807553

    Article  ADS  Google Scholar 

  9. A. Cerioni, F. Finelli, A. Tronconi, and G. Venturi, “Inflation and reheating in induced gravity,” Phys. Lett. B 681, 383–386 (2009); arXiv:0906.1902

    Article  ADS  Google Scholar 

  10. R. Kallosh, A. Linde, and D. Roest, “The double attractor behavior of induced inflation,” J. High Energy Phys. 1409, 062 (2014); arXiv:1407.4471.

    Article  ADS  Google Scholar 

  11. F. L. Bezrukov and M. Shaposhnikov, “The standard model Higgs boson as the inflaton,” Phys. Lett. B 659, 703 (2008); arXiv:0710.3755

    Article  ADS  Google Scholar 

  12. A. O. Barvinsky, A. Y. Kamenshchik, and A. A. Starobinsky, “Inflation scenario via the standard model higgs boson and LHC,” J. Cosmol. Astropart. Phys. 0811, 021 (2008); arXiv:0809.2104

    Article  ADS  Google Scholar 

  13. F. Bezrukov, D. Gorbunov, and M. Shaposhnikov, “On initial conditions for the Hot Big Bang,” J. Cosmol. Astropart. Phys. 0906, 029 (2009); arXiv:0812.3622

    Article  ADS  Google Scholar 

  14. A. O. Barvinsky, A. Y. Kamenshchik, C. Kiefer, A. A. Starobinsky, and C. F. Steinwachs, “Asymptotic freedom in inflationary cosmology with a nonminimally coupled higgs field,” J. Cosmol. Astropart. Phys. 0912, 003 (2009); arXiv:0904.1698

    Article  ADS  Google Scholar 

  15. A. de Simone, M. P. Hertzberg, and F. Wilczek, “Running inflation in the standard model,” Phys. Lett. B 678, 1 (2009); arXiv:0812.4946

    Article  ADS  Google Scholar 

  16. F. L. Bezrukov, A. Magnin, M. Shaposhnikov, and S. Sibiryakov, “Higgs inflation: consistency and generalisations,” J. High Energy Phys. 1101, 016 (2011); arXiv:1008.5157

    Article  ADS  MATH  Google Scholar 

  17. A. O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, A. A. Starobinsky, and C. F. Steinwachs, “Higgs boson, renormalization group, and cosmology,” Eur. Phys. J. C 72, 2219 (2012); arXiv:0910.1041

    Article  ADS  Google Scholar 

  18. F. Bezrukov, “The Higgs field as an inflaton,” Class. Quantum Grav. 30, 214001 (2013); arXiv:1307.0708

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. J. Ren, Z.-Z. Xianyu, and H. J. He, “Higgs gravitational interaction, weak boson scattering, and higgs inflation in Jordan and Einstein frames,” J. Cosmol. Astropart. Phys. 1406, 032 (2014); arXiv:1404.4627.

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Elizalde, S. D. Odintsov, E. O. Pozdeeva, and S. Yu. Vernov, “Renormalization-group inflationary scalar electrodynamics and SU(5) scenarios confronted with Planck2013 and BICEP2 results,” Phys. Rev. D 90, 084001 (2014); arXiv:1408.1285

    Article  ADS  Google Scholar 

  21. T. Inagaki, R. Nakanishi, and S. D. Odintsov, “Non-minimal twoloop inflation,” Phys. Lett. B 745, 105 (2015); arXiv:1502.06301

    Article  ADS  MATH  Google Scholar 

  22. E. Elizalde, S. D. Odintsov, E. O. Pozdeeva, and S. Yu. Vernov, “Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory,” J. Cosmol. Astropart. Phys. 1602, 025 (2016); arXiv:1509.08817

    Article  ADS  Google Scholar 

  23. E. O. Pozdeeva, S. Yu. Vernov, “Renormalization-group improved inflationary scenarios,” Phys. Part. Nucl. Lett. 14, 386 (2017), arXiv:1604.02272.

    Article  Google Scholar 

  24. A. Y. Kamenshchik, I. M. Khalatnikov, and A. V. Toporensky, “Simplest cosmological model with the scalar field,” Int. J. Mod. Phys. D 6, 673 (1997); gr-qc/9801064.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Integrable cosmological models with non-minimally coupled scalar fields,” Class. Quantum Grav. 31, 105003 (2014); arXiv:1307.1910.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. P. Fré, A. Sagnotti, and A. S. Sorin, “Integrable scalar cosmologies I. Foundations and links with string theory,” Nucl. Phys. B 877, 1028 (2013); arXiv:1307.1910.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi and S. Yu. Vernov, “Interdependence between integrable cosmological models with minimal and non-minimal coupling,” Class. Quantum Grav. 33, 015004 (2016); arXiv:1509.00590.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. J. Maciejewski, M. Przybylska, T. Stachowiak and M. Szydlowski, “Global integrability of cosmological scalar fields,” J. Phys. A 41, 465101 (2008); arXiv:0803.2318.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. B. Boisseau, H. Giacomini, D. Polarski and A. A. Starobinsky, “Bouncing universes in scalar-tensor gravity models admitting negative potentials,” J. Cosmol. Astropart. Phys. 1507, 002 (2015); arXiv:1504.07927.

    Article  ADS  MathSciNet  Google Scholar 

  30. B. Boisseau, H. Giacomini and D. Polarski, “Scalar field cosmologies with inverted potentials,” J. Cosmol. Astropart. Phys. 1510, 033 (2015); arXiv:1507.00792.

    Article  ADS  MathSciNet  Google Scholar 

  31. I. Bars and S. H. Chen, “The Big Bang and inflation united by an analytic solution,” Phys. Rev. D 83, 043522 (2011); arXiv:1004.0752

    Article  ADS  Google Scholar 

  32. I. Bars, S. H. Chen, and N. Turok, “Geodesically complete analytic solutions for a cyclic universe,” Phys. Rev. D 84, 083513 (2011); arXiv:1105.3606

    Article  ADS  Google Scholar 

  33. I. Bars, S. H. Chen, P. J. Steinhardt, and N. Turok, “Complete set of homogeneous isotropic analytic solutions in scalartensor cosmology with radiation and curvature,” Phys. Rev. D 86, 083542 (2012); arXiv:1207.1940.

    Article  ADS  Google Scholar 

  34. A. Yu. Kamenshchik, E. O. Pozdeeva, S. Yu. Vernov, A. Tronconi, and G. Venturi, “Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities,” Phys. Rev. D 94, 063510 (2016), arXiv:1602.07192.

    Article  ADS  Google Scholar 

  35. A. Yu. Kamenshchik, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Reconstruction of scalar potentials in modified gravity models,” Phys. Rev. D 87, 063503 (2013); arXiv:1211.6272.

    Article  ADS  Google Scholar 

  36. E. O. Pozdeeva and S. Yu. Vernov, “Stable exact cosmological solutions in induced gravity models,” AIP Conf. Proc. 1606, 48–58 (2014); arXiv:1401.7550.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kamenshchik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenshchik, A.Y., Pozdeeva, E.O., Tronconi, A. et al. General solutions of integrable cosmological models with non-minimal coupling. Phys. Part. Nuclei Lett. 14, 382–385 (2017). https://doi.org/10.1134/S1547477117020169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117020169

Navigation