Skip to main content
Log in

Modeling the induced mutation process in bacterial cells with defects in excision repair system

  • Radiobiology, Ecology and Nuclear Medicine
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A mathematical model of the UV-induced mutation process in Escherichia coli cells with defects in the uvrA and polA genes has been developed. The model describes in detail the reaction kinetics for the excision repair system. The number of mismatches as a result of translesion synthesis is calculated for both wild-type and mutant cells. The effect of temporal modulation of the number of single-stranded DNA during postreplication repair has been predicted. A comparison of effectiveness of different repair systems has been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Cadet, C. Anselmino, T. Douki, and L. Voituriez, “Photochemistry of nucleic acids in cells,” J. Photochem. Photobiol. B 15, 277 (1992).

    Article  Google Scholar 

  2. B. van Houten, “Nucleotide excision repair in Escherichia coli,” Microbiol. Rev. 54, 18 (1990).

    Google Scholar 

  3. W. D. Rupp and P. Howard-Flanders, “Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation,” J. Mol. Biol. 31, 291 (1968).

    Article  Google Scholar 

  4. A. Kuzminov, “Recombinational repair of DNA damage in Escherichia coli and bacteriophage,” Microbiol. Mol. Biol. Rev. 63, 751 (1999).

    Google Scholar 

  5. E. M. Witkin, “Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli,” Bacteriol. Rev. 40, 869 (1976).

    Google Scholar 

  6. Z. Wang, “Translesion synthesis by the UmuC family of DNA polymerase,” Mutat. Res. 486, 59 (2001).

    Article  Google Scholar 

  7. S. V. Aksenov, “Dynamics of the inducing signal for the SOS regulatory system in Escherichia coli after ultraviolet irradiation,” Math. Biosci. 157, 269 (1999).

    Article  Google Scholar 

  8. S. Krishna, S. Maslov, and K. Sneppen, “UV-induced mutagenesis in Escherichia coli SOS response: a quantitative model,” PLoS Comput. Biol. 3, e41 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Ni, S. Y. Wang, J. K. Li, and Q. Ouyang, “Simulating the temporal modulation of inducible DNA damage response in Escherichia coli,” Biophys. J. 93, 62–73 (2007).

    Article  ADS  Google Scholar 

  10. O. V. Belov, E. A. Krasavin, and A. Yu. Parkhomenko, “SOS response dynamics in Escherichia coli bacterial cells upon ultraviolet irradiation,” Phys. Part. Nucl. Lett. 6, 260 (2009).

    Article  Google Scholar 

  11. M. G. Gauthier, J. Herrick, and J. Bechhoefer, “Defects and DNA replication,” Phys. Rev. Lett. 104, 218104 (2010).

    Article  ADS  Google Scholar 

  12. K. C. Giese, C. B. Michalowski, and J. W. Little, “RecA-dependent cleavage of LexA dimers,” J. Mol. Biol. 377, 148–161 (2008).

    Article  Google Scholar 

  13. Q. Jiang, K. Karata, R. Woodgate, M. M. Cox, and M. F. Goodman, “The active form of DNA polymerase V is C RecA* ATP,” Nature 460, 359–363 (2009).

    Article  ADS  Google Scholar 

  14. I. Bruck, R. Woodgate, K. McEntee, and M. F. Goodman, “Purification of a soluble UmuD’C complex from Escherichia coli. Cooperative binding of UmuD’C to single-stranded DNA,” J. Biol. Chem. 271, 10767–10774 (1996).

    Article  Google Scholar 

  15. M. Tang, P. Pham, X. Shen, J. S. Taylor, M. O’Donnell, R. Woodgate, and M. F. Goodman, “Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted mutagenesis,” Lett. Nature 404, 1014–1018 (2000).

    Article  ADS  Google Scholar 

  16. M. Sassanfar and J. W. Roberts, “Nature of the SOSinducing signal in E. coli. The involvement of DNA replication,” J. Mol. Biol. 212, 79–96 (1990).

    Article  Google Scholar 

  17. B. Salles and C. Paoletti, “Control of UV induction of RecA protein,” Proc. Natl. Acad. Sci. USA 80, 65–69 (1983).

    Article  ADS  Google Scholar 

  18. E. K. O’Reilly and K. N. Kreuzer, “Isolation of SOS constitutive mutants of Escherichia coli,” J. Bacteriol. 186, 7149–7160 (2004).

    Article  Google Scholar 

  19. T. Yasuda, K. Morimatsu, T. Horii, T. Nagata, and H. Ohmori, “Inhibition of Escherichia coli RecA coprotease activities by DinI,” EMBO J. 17, 3207–3216 (1998).

    Article  Google Scholar 

  20. E. A. Stohl, J. P. Brockman, K. L. Burkle, K. Morimatsu, S. C. Kowalczykowski, and H. S. Seifert, “Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo,” J. Biol. Chem. 278, 2278–2285 (2003).

    Article  Google Scholar 

  21. C. G. Lin, O. Kovalsky, and L. Grossman, “DNA damage-dependent recruitment of nucleotide excision repair and transcription proteins to Escherichia coli inner membranes,” Nucl. Acids Res. 25, 3151–3158 (1997).

    Article  Google Scholar 

  22. M. A. Petit, E. Dervyn, M. Rose, K. D. Entian, S. McGovern, S. D. Ehrlich, and C. Bruand, “PcrA is an essential DNA helicase of bacillus subtilis fulfilling functions both in repair and rolling-circle replication,” Mol. Microbiol. 29, 261–273 (1998).

    Article  Google Scholar 

  23. T. Kornberg and A. Kornberg, The Enzymes (Academic Press, New York, 1974), Vol. 10. UmuD2 ' C

    Google Scholar 

  24. I. R. Lehman, The Enzymes (Academic Press, New York, 1974), Vol. 14.

    Google Scholar 

  25. M. F. Goodman and R. Woodgate, “The biochemical basis and in vivo regulation of SOS-induced mutagenesis promoted by Escherichia coli DNA polymerase V” in Proceedings of the 65th Cold Spring Harbor Symposia on Quantitative Biology (2000), pp. 31–40.

    Google Scholar 

  26. R. Woodgate and D. G. Ennis, “Levels of chromosomally encoded umu proteins and requirements for in vivo UmuD cleavage,” Mol. Gen. Genet. 229, 10–16 (1991).

    Google Scholar 

  27. E. Y. Oh, L. Claassen, S. Thiagalingam, S. Mazur, and L. Grossman, “ATPase activity of the UvrA and UvrAB protein complexes of the Escherchia coli UvrABC endonuclease,” Nucl. Acids Res. 17, 4145–4159 (1989).

    Article  Google Scholar 

  28. S. J. Mazur and L. Grossman, “Dimerization of Escherichia coli UvrA and its binding to undamaged and ultraviolet light damaged DNA,” Biochemistry 30, 4432–4443 (1991).

    Article  Google Scholar 

  29. D. K. Orren and A. Sancar, “Formation and enzymatic properties of the UvrB.DNA complex,” J. Biol. Chem. 265, 15796–15803 (1990).

    Google Scholar 

  30. D. K. Orren, C. P. Selby, J. E. Hearst, and A. Sancar, “Post-incision steps of nucleotide excision repair in Escherichia coli,” J. Biol. Chem. 267, 780–788 (1992).

    Google Scholar 

  31. D. K. Orren and A. Sancar, “The (A)BC excinuclease of Escherichia coli has only the UvrB and UvrC subunits in the incision complex,” Proc. Natl. Acad. Sci. USA 86, 5237–5241 (1989).

    Article  ADS  Google Scholar 

  32. L. E. Mechanic, B. A. Frankel, and S. W. Matson, J. Biol. Chem. 275, 38337–38346 (2000).

    Article  Google Scholar 

  33. F. R. Bryant, K. A. Johnson, and S. J. Benkovic, “Elementary steps in the DNA polymerase I reaction pathway,” Biochemistry 22, 3537–3546 (1983).

    Article  Google Scholar 

  34. P. E. Lavery and S. C. Kowalczykowski, “Biochemical basis of the constitutive repressor cleavage activity of RecA730 protein. A comparison to RecA441 and RecA803 proteins,” J. Biol. Chem. 267, 20648–20658 (1992).

    Google Scholar 

  35. S. L. Lusetti, O. N. Voloshin, R. B. Inman, R. D. Camerini-Otero, and M. M. Cox, “The DinI protein stabilizes RecA protein filaments,” J. Biol. Chem. 279, 30037–30046 (2004).

    Article  Google Scholar 

  36. J. C. Drees, S. L. Lusetti, S. Chitteni-Pattu, R. B. Inman, and M. M. Cox, “A RecA filament capping mechanism for RecX protein,” Mol. Cell 15, 789798 (2004).

    Article  Google Scholar 

  37. J. N. Ollivierre, J. L. Sikora, and P. J. Beuning, “Dimer exchange and cleavage specificity of the DNA damage response protein UmuD,” Biochim. Biophys. Acta 1834, 611–620 (2013).

    Article  Google Scholar 

  38. M. Viswanathan and S. T. Lovett, “Exonuclease X of Escherichia coli. A novel 3'-5' DNase and DnaQ superfamily member involved in DNA repair,” J. Biol. Chem. 274, 30094–30100 (1999).

    Article  Google Scholar 

  39. Y. Kitagawa, E. Akaboshi, H. Shinagawa, T. Horii, H. Ogawa, and T. Kato, “Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli,” Proc. Natl. Acad. Sci. USA 82, 4336–4340 (1985).

    Article  ADS  Google Scholar 

  40. S. Fujii and R. P. Fuchs, “Defining the position of the switches between replicative and bypass DNA polymerases,” EMBO J. 23, 4342–4352 (2004).

    Article  Google Scholar 

  41. M. Pruteanu and T. A. Baker, “Controlled degradation by ClpXP protease tunes the levels of the excision repair protein UvrA to the extent of DNA damage,” Mol. Microbiol. 71, 912–924 (2009).

    Article  Google Scholar 

  42. T. Kato, R. H. Rothman, and A. J. Clark, “Analysis of the role of recombination and repair in mutagenesis of Escherzchza coli by UV irradiation,” Genetics 87, 1–18 (1974).

    Google Scholar 

  43. H. Bates, S. K. Randall, C. Rayssiguier, B. A. Bridges, M. F. Goodman, and M. Radman, “Spontaneous and UV-induced mutations in Escherichia coli K-12 strains with altered or absent DNA polymerase I,” J. Bacteriol. 171, 2480–2484 (1989).

    Google Scholar 

  44. N. Friedman, S. Vardi, M. Ronen, U. Alon, and J. Stavans, “Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria,” PloS Biol. 3, 238 (2005).

    Article  Google Scholar 

  45. M. Tang and M. Ross, “Single-strand breakage of DNA in UV-irradiated UvrA, UvrB, and UvrC mutants of Escherichia coli,” J. Bacteriol. 161, 933–938 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bugay.

Additional information

Original Russian Text © A.N. Bugay, M.A. Vasilyeva, E.A. Krasavin, A.Yu. Parkhomenko, 2015, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugay, A.N., Vasilyeva, M.A., Krasavin, E.A. et al. Modeling the induced mutation process in bacterial cells with defects in excision repair system. Phys. Part. Nuclei Lett. 12, 850–862 (2015). https://doi.org/10.1134/S1547477115070067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477115070067

Keywords

Navigation