Skip to main content
Log in

BRST charges for finite nonlinear algebras

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three generators and ghost-anti-ghosts commuting with constraints. We consider a one-parametric family of quadratic algebras with three generators and show that the BRST charge acquires the conventional form after a redefinition of ghosts. The modified ghosts form a quadratic algebra. The family possesses a nonlinear involution, which implies the existence of two independent BRST charges for each algebra in the family. These BRST charges anticommute and form a double BRST complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Gitman and I. V. Tyutin, Quantization of Fields with Constraints (Springer, 1990); M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton Univ., Princeton, 1992).

  2. E. S. Fradkin and T. E. Fradkina, “Quantization of Relativistic Systems with Boson and Fermion First- and Second-Class Constraints,” Phys. Lett. B 72, 343 (1978); K. Schoutens, A. Sevrin, and P. Von Nieuwenhuisen, “Quantum BRST Charge for Quadratically Nonlinear Lie Algebras,” Commun. Math. Phys. 124, 87 (1989); E. Bergshoeff, A. Sevrin, and X. Shen, “A Derivation of the BRST Operator for Noncritical W Strings,” Phys. Lett. B 296, 95 (1992); hep-th/9209037; E. Bergshoeff et al., “A BRST Analysis of W Symmetries,” Nucl. Phys. B 411, 717 (1994); hep-th/9307046; A. Dresse and M. Henneaux, “BRST Structure of Polynomial Poisson Algebras,” J. Math. Phys. 35, 1334 (1994); hep-th/9312183; Z. Khviengia and E. Sezgin, “BRST Operator for Superconformal Algebras with Quadratic Nonlinearity,” Phys. Lett. B 326, 243 (1994); hep-th/9307043; I. L. Buchbinder and P. M. Lavrov, “Classical BRST Charge for NOnlinear Algebras,” J. Math. Phys. 48, 082306-1 (2007); hep-th/0701243.

    Article  ADS  Google Scholar 

  3. D. Bernard, “A Remark on Quasitriangular Quantum Lie Algebras,” Phys. Lett. B 260, 389–393 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  4. L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, “Quantization of Lie Groups and Lie Algebras,” Lening. Math. J. 1, 193 (1990).

    MATH  MathSciNet  Google Scholar 

  5. C. Burdik, A. P. Isaev, and O. Ogievetsky, “Standard Complex for Quantum Lie Algebras,” Nucl. Phys. 64, 2101–2104 (2001); math/QA/0010060.

    MathSciNet  Google Scholar 

  6. A. P. Isaev and O. V. Ogievetsky, “BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups,” Theor. Math. Phys 129, 289 (2001); math.QA/0106206.

    Article  Google Scholar 

  7. A. P. Isaev and O. V. Ogievetsky, “BRST Operator for Quantum Lie Algebras: Explicit Formula,” Intern. J. Mod. Phys. A 19(Suppl.), 240–247 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. V. G. Gorbounov, A. P. Isaev, and O. V. Ogievetsky, “BRST Operator for Quantum Lie Algebras: Relation To Bar Complex,” Theor. Math. Phys 139, 473–485 (2004); math.QA/0711.4133.

    Article  MATH  Google Scholar 

  9. A. P. Isaev and O. V. Ogievetsky, “BRST and Anti-BRST Operators for Quantum Linear Algebra U q(gl(N)),” Nucl. Phys. Proc. Suppl. 102, 306–311 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  10. A. P. Isaev, S. O. Krivonos, and O. V. Ogievetsky, “BRST Operators for W Algebras,” J. Math. Phys. 49, 073512 (2008); math-ph/0802.3781.

    Article  MathSciNet  ADS  Google Scholar 

  11. H. Ewen and O. Ogievetsky, “Classification of the GL(3) Quantum Matrix Groups,” q-alg/9412009.

  12. O. Ogievetsky, “Differential Operators on Quantum Spaces for GL q(n) and SO q(n),” Lett. Math. Phys. 24, 245–255 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. E. Ivanov, S. Krivonos, and R. P. Malik, “N = 2 Super W 3 Algebra and N = 2 Super Boussinesq Equation,” Int. J. Mod. Phys. A 10, 253 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Isaev.

Additional information

The article is published in the original.

Unité Mixte de Recherche (UMR 6207) du CNRS et des Universités Aix-Marseille I, Aix-Marseille II et du Sud Toulon-Var; laboratoire affilié à la FRUMAM (FR 2291).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, A.P., Krivonos, S.O. & Ogievetsky, O.V. BRST charges for finite nonlinear algebras. Phys. Part. Nuclei Lett. 7, 223–228 (2010). https://doi.org/10.1134/S1547477110040011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477110040011

Keywords

Navigation