Skip to main content
Log in

U–Pb Isotope Age of Zircon (LA–ICP–MS Method) from Magmatic Rocks and Some Aspects of the Genesis of the Tyrnyauz Mo–W Deposit (North Caucasus)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

The authors' determinations of the U–Pb isotopic age of zircon (LA–ICP–MS method) in the main types of igneous rocks emphasize the presence of both Neogene and older (up to Late Paleozoic) intrusions at the deposit. The earliest are rocks of the “trondhjemite” massif, which were emplaced in the Late Paleozoic. This age of the rocks of the trondhjemite massif, confirmed by the U–Pb isotopic method (302 ± 4 Ma) for zircon from rocks of its main intrusive phase (tonalites–granodiorites), is consistent with manifestation of Late Paleozoic tungsten-bearing magmatism and associated W mineralization in the North Caucasus (in the Peredevoi Range) and allows a possible Late Paleozoic age of large bodies of altered skarns with W mineralization at the Tyrnyauz deposit. At the next, Neogene stage, the intrusion of leucocratic granites took place with the formation of bodies of igneous breccias, the emplacement of an accompanying aplite dike formation, and the development of intense molybdenum (with subordinate W) mineralization in large vein–veinlet, stockwork systems. The U–Pb isotopic age of zircon in leucocratic granites is 2.67 ± 0.04 Ma. Later, a large massif of biotite (Eldzhurt) granites and associated formation of aplite and alaskite dikes were formed. Emplacement of subvolcanic rhyolite bodies followed. The U–Pb isotopic age of zircon in the Eldzhurt granites is 2.10 ± 0.08 Ma, and in rhyolites, 2.05 ± 0.04 Ma. Intrusion of these rocks was accompanied by the formation of Mo–W–Bi–Te–Au mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Andersen, T., Correction of common lead in U-Pb analyses that do not report 204Pb, Chem. Geol., 2002, vol. 192, pp. 59–79.

    Article  Google Scholar 

  2. Arakelyants, M.M., Borsuk, A.M., and Shanin, L.L., The youngest granitoid volcanoplutonic association of the Greater Caucasus: K-Ar dating, Dokl. Akad. Nauk SSSR, 1968, vol. 182, no. 5, pp. 1157–1160.

    Google Scholar 

  3. Audetat, A., Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado, J. Petrol., 2015, vol. 56, no. 8, pp. 1519–1546.

    Article  Google Scholar 

  4. Bagdasaryan, G.P. and Lyakhovich, V.V., New geochronological data on the Tyrnyauz rocks, Geol. Rud. Mestorozhd., 1981, no. 4, pp. 97–102.

  5. Barrett, T.J., Lithogeochemical techniques using immobile elements, J. Geochem. Explor., 1993, vol. 48, pp. 109–133.

    Article  Google Scholar 

  6. Bogina, M.M., Petrology of Pliocene collisional-type granitois of the Greater Caucasus, Extended Abstract of Candidate’s (Geol.–Min.) Dissertation, Moscow: IGEM RAN, 1994.

  7. Bookstrom, A.A., Carten, R.B., Shannon, J.R., and Smith, R.P., Origins of bimodal leucogranite–lamprophyre suites, Climax and Red Mountain porphyry molybdenum systems, Colorado: petrologic and strontium isotopic evidence, Colorado School of Mines, 1988, vol. 83, pp. 1–22.

  8. Borsuk, A.M., Mezozoiskie i kainozoiskie magmaticheskie formatsii Bol’shogo Kavkaza (Mesozoic and Cenozoic Magmatic Associations of the Greater Caucasus), Moscow: Nauka, 1979.

  9. Borsuk, A.M., Arakelyants, M.M., and Shanin, L.L., Stages of Cenozoic granitoid magmatism and molybdenum mineralization at the North Caucasus: geological and geochronological data, Izv. Akad. Nauk SSSR, Ser. Geol., 1972, no. 2, pp. 135–138.

  10. Dokuchaev, A.Ya. and Nosova, A.A., Ore mineralization throughout the Tyrnyauz deep well (North Caucasus), Geol. Rud. Mestorozhd., 1994, no. 3, pp. 218–229.

  11. Dokuchaev, A.Ya., Bubnov, S.N., Gurbanov, A.G., Gazeev, V.M., Kurchavov, A.M., and Leksin, A.B., Metallogeny of Neogene granitoids of North Caucasus, Novye gorizonty v izuchenii protsessov magmo—i rudoobrazovaniya: mater. nauch. konf. (New Horizons in Study of Magma and Ore Formation. Proc. Conf.), Moskva: IGEM RAN. 2010, pp. 64–65.

  12. Dzagoeva, E.A., Kononov, O.V., and Spiridonov, E.M., Geological structure of the Tyrnyauz tonalite–plagiogranite massif (Noryh Caucasus), Vestn. Mosk. Gos. Univ., Ser. 4. Geol., 1983, no. 3, pp. 45–57.

  13. Elbrus Mining Company. http://elbrusmining.com/?lang=en Accessed 18.01.2021

  14. Emkuzhev, A.S. and Dzhubuev, N.S., Mineral-raw base of the Kabardino–Balkar Republic, Mineral. Res. Rossii, Ekon. Upravl., 2012, no. 1, pp. 42–55.

  15. Frolova, T.I., Basic-to-acid and acid-to-basic magmatic evolution and Earth’s crust, Vestn. Mosk. Gos. Univ., Ser. 4. Geol., 1991, no. 1, pp. 3–19.

  16. Gamyanin, P.N., Goncharov, V.I., and Goryachev, N.A., Gold–rare–metal deposits of Northeast Russia, Tikhookean. Geol., 2000, no. 15, pp. 619–636.

  17. Gramenitskiy, E.N. and Kononov, O.V., Mineral associations and Mo–W ore types of the Slepaya Zalezh’ orebody at the Tyrnyauz Deposit, Geol. Ore Deposits, 2019, vol. 61, no. 4, pp. 359–380.

    Article  Google Scholar 

  18. Gramenitskiy, E.N., Zinov’eva, N.G., Kononov, O.V., and Nesterov, I.V., Main features of mineralogy and zoning of post–skarn productive metasomatites of Tyrnyauz, Ocherki Fiz.–Khim. Petrol., 1978, vol. 7, pp. 13–27.

    Google Scholar 

  19. Griffin, W.L., Powell, W.J., Pearson, N.J., and O’Reilly, S.Y., Glitter: data reduction software for laser ablation ICP–MS, Sylvester, P., Eds., Miner. Assoc. Canada, Short Course Series, 2008, vol. 40, pp. 307–311.

    Google Scholar 

  20. Grün, R., Tani, A., Gurbanov, A., Koshchug, D., Williams, I., and Braun, J., A new method for the estimation of cooling and denudation rates using paramagnetic centers in quartz: a case study on the Eldzhurtinskiy granite, Caucasus, J. Geophys. Res., 1999, vol. 104, pp. 17531.

    Article  Google Scholar 

  21. Gurbanov, A.G. and Aretz, I., Granites of the Late Paleozoic diorite–granite association on the Northern Caucasus, Russia: guides for tungsten mineralization, Petrology, 1996, vol. 38, no. 4, pp. 362–380.

    Google Scholar 

  22. Gurbanov, A.G., Rekharskii, V.I., Andrianov, V.I., et al., Time relation of tungsten mineralization with granites of the Late Paleozoic diorite–granite formation (North Caucasus), Izv. Akad. Nauk SSSR. Ser. Geol., 1992, no. 6, pp. 124–131.

  23. Hess, J.C., Lippolt, H.J., Gurbanov, A.G., and Michalski, I., The cooling history of the Late Pliocene Eldzhurtinskiy granite (Caucasus, Russia) and the thermochronological potential of grain-size/age relationships, Earth Planet. Sci. Lett., 1993, vol. 117, nos. 3–4, pp. 393–406.

    Article  Google Scholar 

  24. Hiess, J., Condon, D.J., McLean, N., and Noble, S.R., 238U/235U systematics in terrestrial uranium–bearing minerals, Science, 2012, vol. 335, pp. 1610–1614.

    Article  Google Scholar 

  25. Hoskin, P.W.O. and Black, L.P., Metamorphic zircon formation by solid–state re–crystallization of protolith igneous zircon, J. Metamorph. Geol., 2000, vol. 18, pp. 423–439.

    Article  Google Scholar 

  26. Ito, H., Tamura, A., Morishita, T., Arai, S., Arai, F., and Kato, O., Quaternary plutonic magma activities in the southern Hachimantai geothermal area (Japan) inferred from zircon LA–ICP–MS U–Th–Pb dating method, J. Volcanol. Geotherm. Res., 2013, vol. 265, pp. 1–8.

    Article  Google Scholar 

  27. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U-Pb zircon geochronology, Chem. Geol., 2004, vol. 211, pp. 47–69.

    Article  Google Scholar 

  28. Kaigorodova, E.N., Lebedev, V.A., Chernyshev, I.V., Yakushev, A.I., Neogene–Quaternary magmatism in Eastern Balkaria (North Caucasus, Russia): evidence from the isotope–geochronological data, Dokl. Earth Sci., 2021, vol. 496, no. 1, pp. 37–44.

    Article  Google Scholar 

  29. Khain, V.E., Regional’naya geotektonika. Al’piisko–Sredizemnomorskii poyas (Regional Geotectonics. Alpine–Mediterranean Belt), Moscow: Nedra, 1984.

  30. Khitarov, N.I., Senderov, E.E., Bychkov, A.M., et al., Osobennosti uslovii stanovleniya El’dzhurtinskogo granitnogo massiva (Conditions of Formation of the El’dzhurta Granitoid Massif), Moscow: Nauka, 1980.

  31. Khrushchev, N.A., Tyrnyauz (skarn tungsten–molybdenum deposit at North Caucasus), Sov. Geologiya, 1958, no. 2, pp. 51–72.

  32. Kononov, O.V., Processes of Molybdenum–Tungsten Mineralization in Skarns of the Tyrnyauz Deposit, Extended Abstract of Candiate’s (Geol.–Min.) Dissertation, Moscow: MGU, 1963.

  33. Kononov, O.V. and Kulikov, I.V., New data on age relations of the molybdenum–tungsten mineralization with El’dzhurta granite, Tyrnyauz, Geol. Rud. Mestorozhd., 1979, no. 4, pp. 100–103.

  34. Korzhinskii, D.S., Acid–basic properties as the main factor of magmatic and postmagmatic processes, Mater. ko 2–mu Vsesoyuznomu petrograficheskomu soveshchaniyu (Proc. 2nd. All–Union Petrographic Conference), Tashkent, 1958, pp. 22.

  35. Kostitsyn, Yu.A., Conditions of emplacement of the El’dhurta granite based on isotope (oxygen and strontium) data on vertical section, Geokhimiya, 1995, no. 6, pp. 780–797.

  36. Kostitsyn, Yu.A. and Kremenetskiy, A.A., Age of final magmatic stage of the El’dzhurta granite: Rb–Sr isotope dating of aplites, Geokhimiya, 1995, no. 7, pp. 925–931.

  37. Kurdyukov, A.A., On the age of rare–metal mineralization of the Peredovoy Range zone (North Caucasus), Izv. Akad. Nauk SSSR., Ser. Geol., 1974, no. 5, pp. 135–145.

  38. Kurdyukov, A.A., Lithological control of mineralization at the Tyrnyauz deposit, North Caucasus, Izv. Akad. Nauk SSSR., Ser. Geol., 1979, no. 2, pp. 99–111.

  39. Kurdyukov, A.A., Conditions of formation of leucocratic granitoids of Tyrnyauz, Izv. Vyssh. Ucheb. Zaved., Geol. Zazved., 1982, no. 11, pp. 95–104.

  40. Kurdyukov, A.A., Structural–magmatic prerequisites for the assessment of age of the Tyrnyauz rare–metal mineralization, Geol. Rud. Mestorozhd., 1983, no. 4, pp. 49–63.

  41. Kurdyukov, A.A., Evolution of thermal metamorphism of the Tyrnyauz ore field and related mineralization, Geol. Rud. Mestorozhd., 1984, no. 4, pp. 34–43.

  42. Kurdyukov, A.A. and Kurdyukova, Z.I., On two cycles of ore formation at the Tyrnyauz deposit (North Caucasus), Dokl. Akad. Nauk SSSR, 1972, vol. 205, no. 2, pp. 424–427.

    Google Scholar 

  43. Lavrishchev, V. A., Sheikov, A. A., Andreev, V. M., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Skifskaya. List K–37 (Sochi), K–38 (Makhachkala), K–39. Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Skifskaya Series. Sheets K–37 (Sochi), K–38 (Makhachkala), K–39. Explanatory Note), St. Petersburg: Kartograficheskaya fabrika VSEGEI, 2011.

  44. Lebedev, V.A., Chernyshev, I.V., Chugaev, A.V., and Arakelyants, M.M., Duration of young (Pliocene) intrusive magmatism in the Tyrnyauz Ore Field, Northern Caucasus: new K–Ar and Rb–Sr data, Dokl. Earth Sci., 2004, vol. 396, no. 2, pp. 529–533.

    Google Scholar 

  45. Ludwig, K., User’s Manual for Isoplot 3.00, Berkeley Geochronol. Center, 2003.

    Google Scholar 

  46. Lyakhovich, V.V., Svyaz’ orudeneniya s magmatizmom (Tyrnyauz) (Relationship of Mineralization with Magmatism (Tyrnyauz)), Moscow: Nauka, 1976.

  47. Miller, J.S., Matzel, J.E., Miller, C.F., Burgess, S.D., and Miller, R.B., Zircon growth and recycling during the assembly of large, composite arc plutons, J. Volcanol. Geotherm. Res., 2007, vol. 167, nos. 1/4, pp. 282–299.

    Article  Google Scholar 

  48. Nosova, A.A., Odikadze, G.L., and Dokuchaev, A.Ya., Tungsten-bearing dikes in deep sectors of the El’dzhurtin granite massif, Northern Caucasia, Dokl. Earth Sci., 1996, vol. 346, no. 1, pp. 12–14.

    Google Scholar 

  49. Nosova, A.A., Sazonova, L.V., Dokuchaev, A.Ya., et al., Neogene late–collisional subalkaline granitoids in the area of Mineral’nye Vody, Caucasus: TP\({{f}_{{{{{\text{O}}}_{2}}}}}\) crystallization conditions, fractional and fluid–magmatic differentiation, Petrology, 2005, no. 2, pp. 139–178.

  50. Paquette, J.L. and Mergoil–Daniel, J., Origin and U–Pb dating of zircon-bearing nepheline syenite xenoliths preserved in basaltic tephra, Massif Central, France, Contrib. Mineral. Petrol., 2009, vol. 158, pp. 245–262.

    Article  Google Scholar 

  51. Parada, S.G. and Stolyarov, V.V., Relation of gold mineralization on the northern flank of the Tyrnyauz Deposit to intrusive complexes, Kabardino–Balkar Republic, Dokl. Earth Sci., 2012, vol. 445, no. 2, pp. 939–942.

    Article  Google Scholar 

  52. Pek, A.V., Geologicheskoe stroenie rudnogo polya i mestorozhdeniya Tyrnyauz (Geological Structure of the Ore Field and Tyrnyauz Deposit), Moscow: AN SSSR, 1962.

  53. Philip, H., Cisternas, A., Gvishiani, A., and Gorshkov, A., The Caucasus: an actual example of the initial stage of continental collision, Tectonophysics, 1989, vol. 161, nos. 1–2, pp. 1–21.

    Article  Google Scholar 

  54. Pis’mennyi, A.N., Pichuzhkov, A.N., Zarubina, M.A., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000 (izdanie vtoroe). Seriya Kavkazskaya. Listy K-38-I, VII (Kislovodsk). Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1 : 200 000 (2nd Edition). Kavkazskaya Series. Sheets K-38-I, VII (Kislovodsk). Explanatory Note), St Petersburg: Kartfabrika VSEGEI, 2004.

  55. Podlessky, K.V., Vlasova D.K., Ivanova, G.F., et al., Conditions of formation of the Subashi scheelite ore occuurencein the Tyrnyauz ore district, Geol. Rud. Mestorozhd., 1992, no. 3, pp. 47–65.

  56. Popov, V.S., Kremenetskiy, A.A., Lipchanskaya, L.I., and Udod, N.I., Petrology of the El’dzhurta granite massif, North Caucasus: evidence from deep-sea drilling (composition of granites and their alterations through vertical), Zap. Vsesoyuz. Mineral. O-va, 1993, vol. 122, no. 3, pp. 11–29.

    Google Scholar 

  57. Rekharskii V.I., Kudrin A.V., Malinovskii E.P., et al., Distribution and formation conditions of W–Mo ore mineralization at the Tyrnyauz Deposit (Russia), Geol. Ore Deposits, 1997, vol. 39, no. 2, pp. 129–137.

    Google Scholar 

  58. Richards, J.P., Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen. From subduction to collision. Ore Geol. Rev., 2015, vol. 70, pp. 323–345.

    Article  Google Scholar 

  59. Rodzyanko, N.G., Nefedov, N.K., and Sviridenko, A.F., Redkometal’nye skarny Tyrnyauza (Rare–Metal Skarns of Tyrnyauz), Moscow: Nedra. 1973.

  60. Sakata, S., Hirakawa, S., Iwano, H., et al., A new approach for constraining the magnitude of initial disequilibrium in quaternary zircons by coupled uranium and thorium decay series dating, Quatern. Geol., 2017, vol. 38, pp. 1–12.

    Article  Google Scholar 

  61. Sakata, S., A practical method for calculating the U–Pb age of quaternary zircon: correction for common Pb and initial disequilibria, Geochem. J., 2018, vol. 52, pp. 281–286.

    Article  Google Scholar 

  62. Seedorff, E. and Einaudi, M.T., Henderson porphyry molybdenum system, Colorado: I. Sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style, Econ. Geol., 2004, vol. 99, pp. 1–35.

    Google Scholar 

  63. Seifert, T., Contributions to the metallogenetic importance of lamprophyres – examples from polymetallic Au-, Sn–W–Mo–Li–In–, As–Zn–Sn–Cu–In–Pb–Ag–/Ag–Sb–, and U-ore clusters, Mineralogia, 2010, vol. 37, pp. 55–58.

    Google Scholar 

  64. Slama, J., Kosler, J., Condon, D.J., et al., Plesovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis, Chem. Geol., 2008, vol. 249, nos. 1–2, pp. 1–35.

    Article  Google Scholar 

  65. Sliwinski, J.T., Guillong, M., Liebske, C., Dunkl, I., von Quadt, A., and Bachmann, O., Improved accuracy of LA–ICP–MS U-Pb ages of Cenozoic zircons by alpha dose correction, Chem. Geol., 2017, vol. 472, pp. 8–21.

    Article  Google Scholar 

  66. Sobolev, R.N. and Kononov, O.V., New data on stages of formation of the Eul’dzhurta granites, Dokl. Akad. Nauk, 1993, vol. 330, no. 3, pp. 360–362.

    Google Scholar 

  67. Sosson, M., Kaymakci, N., Stephenson, R.A., Bergerat, F., and Starostenko, V., Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian platform, Geol. Soc. London: Spec. Publ., 2010, vol. 340, pp. 181–238

    Article  Google Scholar 

  68. Stemprok, M. and Seifert, T., An overview of the association between lamprophyric intrusions and rare–metal mineralization, Mineralogia, 2011, vol. 42, pp. 121–162.

    Article  Google Scholar 

  69. Stolyarov, V.V., Composition, Conditions of Localization, and Prospecting Signs of the Gold–Skarn Mineralization on the Nortehrn Flank of the Tyrnyauz Ore Field, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Rostov-on-Don: IAZ YuNTs RAN, 2015.

  70. Wallace, S.R., The Climax–type molybdenum deposits: what they are, where they are, and why they are, Econ. Geol., 1995, vol. 90, pp. 1359–1380.

    Google Scholar 

  71. Zhuravlev, D.Z. and Negrei, E.V., Simultaneous formation of the El’dzhurta granite and ore-bearing metasomatites of Tyrnyauz (North Caucasus): Rb–Sr data, Dokl. Akad. Nauk, 1993, vol. 332, no. 4, pp. 483–487.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Tyshkevich (TsNIGRI) for the selection and preparation of zircon samples.

Funding

The study was carried out with the financial support of a project by the Russian Federation represented by the Ministry of Education and Science of Russia (project no. 075-15-2020-802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Soloviev.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, S.G., Kryazhev, S.G., Semenova, D.V. et al. U–Pb Isotope Age of Zircon (LA–ICP–MS Method) from Magmatic Rocks and Some Aspects of the Genesis of the Tyrnyauz Mo–W Deposit (North Caucasus). Geol. Ore Deposits 63, 409–430 (2021). https://doi.org/10.1134/S1075701521050056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521050056

Keywords:

Navigation