Skip to main content
Log in

Compositional Variations of Pyrochlore Group Minerals in Ongonite and Zwitter of the Verkhneurmiysky Pluton, Russian Far East

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The pyrochlore-group minerals in ongonite and zwitter of the Verkhneurmiysky granite pluton in the Badzhal district, Russian Far East are reported. The composition, genesis, and crystallization sequence are characterized. Three rare species of pyrochlore, pyrochlore-I and pyrochlore-II in ongonite, and pyrochlore-III in zwitter are found for the first time in the Russian Far East. Pyrochlore-I is a possible new member of the pyrochlore group, bismuth-bearing “oxyferropyrochlore”; pyrochlore-II is an uranium-bearing and iron-bearing hydrokenopyrochlore; and pyrochlore-III is a lead-and iron-bearing hydrokenopyrochlore. All three pyrochlore species result from an alteration of early accessory minerals: niobium wolframite, samarskite, ishikawaite, wolframoixiolite, scheelite, and fergusonite. The Far East pyrochlore is characterized by extremely high Ta, W, and Fe contents. Compositional variations in pyrochlore are caused by substitution of Nb, Ta, W at the B site of the crystal structure and exchange of U, Pb, Bi, and Fe at the A site. The Ta, Bi, and Th concentrations decrease during transition from the late magmatic to greisen stage; the mineral forming significance of Nb, W, U, Y, Pb, and H2O increases as followed: Ta, Nb, Bi, Fe, Th, As, P, Ca, Ti → Nb, Ta, W, U, Fe, HREE, Sc, Mn, Na, H2O → Nb, Pb, W, Fe, Y, H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aleksandrov, I.V., Modeli endogennogo tantal-niobievogo orudeneniya (Models of Endogenous Tantalum-Niobium Mineralization) Moscow: Nauka, 1973.

  2. Alekseev, V.I., Litii-ftoristye granity Dal’nego Vostoka (Lithium-fluorine Granites of the Far East) Saint Petersburg: Saint Petersburg Mining University, 2014.

  3. Alekseev, V.I. and Marin, Yu.B., Composition and evolution of accessory mineralization of Li–F granites in the Far East as indicators of their ore potential, Geol. Ore Deposits, 2015, vol. 57, no. 8, pp. 635–644.

    Article  Google Scholar 

  4. Alekseev, V.I., Sukhanova, K.G., and Marin, Yu.B., Niobium minerals as indicators of a genetic link between tin-bearing zwitter and lithium–fluorine granite of the Verkhneurmiysky massif in the Amur River Region, Geol. Ore Deposits, 2018, vol. 60, no. 8, pp. 698–707.

    Article  Google Scholar 

  5. Atencio, D., Andrade, M.B., Christy, A.G., Giere, R., and Kartashov, P.M., The pyrochlore supergroup of minerals: nomenclature, Can. Mineral., 2010, vol. 48, pp. 673–698.

    Article  Google Scholar 

  6. Bastos, Neto A.C., Pereira, V.P., Ronchi, L.H., de Lima, E.F., and Frantz, J.C., The world-class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga mining district, Amazonas State, Brazil, Can. Mineral., 2009, vol. 47, pp. 1329–1357.

    Article  Google Scholar 

  7. Belkasmi, M., Cuney, M., Pollard, P.J., and Bastoul, A., Chemistry of the Ta–Nb–Sn–W oxide minerals from the Yichun rare metal granite (SE China): genetic implications and comparison with Moroccan and French Hercynian examples, Mineral. Mag., 2000, vol. 64, no. 3, pp. 507–523.

    Article  Google Scholar 

  8. Beskin, S.M., Larin, B.N., and Marin, Yu.B., Redkometall’nye granitovye formatsii (Rare-Metal Granite Formations), Leningrad: Nedra, 1979.

  9. Beskin, S.M., Grebennikov, A.M., and Matias, V.V., The Khangilay granite pluton and the Orlovskoye tantalum deposit in Transbaikalia, Petrology, 1994, vol. 2, no. 1, pp. 68–87.

    Google Scholar 

  10. Breiter, K., Skoda, R., and Uher, P., Nb–Ta–Ti–W–Sn–oxide minerals as indicators of a peraluminous Pand F-rich granitic system evolution: Podlesi, Czech Republic, Mineral. Petrol., 2007, vol. 91, pp. 225–248.

    Article  Google Scholar 

  11. Brodskaya, R.L. and Marin, Yu.B., Ontogenetic analysis on micro- and nanolevel of mineral individuals and aggregates for restoration of ore-genetical conditions and estimations of technological properties of mineral raw materials, J. Mining Inst., 2016, vol. 219, pp. 369–376.

    Google Scholar 

  12. Chakhmouradian, A.R. and Mitchell, R.H., New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia, Eur. J. Mineral., 2002, vol. 14, pp. 821–836.

    Article  Google Scholar 

  13. Chukanov, N.V., Skrigitil, A.M., Kuzmina, O.V., and Zadov, A.E., Bismutopyrochlore (Bi,U,Ca,Pb), (Bi,U,Ca,Pb)1+x (Nb,Ta)2O6(OH) ⋅ nH2O as a new mineral from the Mica pegmatite vein, East Pamirs, Zap. Ross. Mineral. O-va, 1999, no. 4, pp. 36–41.

  14. Dostal, J., Kontak, D., Gerel, O., Shellnutt, G., and Fayek, M., Cretaceous ongonites (topaz-bearing albiterich microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of extreme magmatic fractionation and pervasive metasomatic fluid: rock interaction,Lithos, 2015, vol. 236, pp. 173–189.

    Article  Google Scholar 

  15. Ercit, T.S., Groat, L.A., and Gault, R.A., Granitic pegmatites of the O’Grady batholith, N.W.T., Canada: a case study of the evolution of the elbaite subtype of rare-element granitic pegmatite. Can. Mineral., 2003, vol. 41, pp. 117–137.

    Article  Google Scholar 

  16. Geodynamics, Magmatism, and Metallogeny of the Russian East, Ed. by Khanchuk. A.I., Vladivostok: Dal'nauka, 2006, vol. 2.

  17. Gorzhevskaya, S.A. and Skorobogatova, N.V., Pyrochlore-microlite group, Tipomorfizm mineralov. Spravochnik (Typomorphism of Minerals. A handbook), Moscow: Nedra, 1989, pp. 363–376.

  18. Gorzhevskaya, S.A., Sidorenko, G.A., and Ginzburg, A.I., Titano-tantalo-niobatty (svoistva, osobennosti sostava i usloviya obrazovaniya) (Titano–Tantalum-Niobates (Properties, Features of Composition and Formation Condition), Moscow: Nedra, 1974.

  19. Hålenius, U., Hatert, F., Pasero, M., and Mills, S.J., New minerals and nomenclature modifications approved in, 2017, CNMNC Newsletter N 37, June 2017, Eur. J. Mineral., 2017, vol. 29, pp. 529–533.

    Article  Google Scholar 

  20. Hårlaux, M., Marignac, Ch., Cuney, M., Mercadier, J., Magott, R., and Mouthier, B., Nb–Ti–Y–HREE–W–U oxide minerals with uncommon compositions associated with the tungsten mineralization in the Puy-Les-Vignes deposit (Massif Central, France): evidence for rare-metal mobilization by late hydrothermal fluids with a peralkaline signature, Can. Mineral., 2015, vol. 53, pp. 653–672.

    Article  Google Scholar 

  21. Hatert, F., Mills, S.J., Pasero, M., and Williams, P.A., CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names, Eur. J. Mineral., 2013, vol. 25, pp. 113–115.

    Article  Google Scholar 

  22. Hogarth, D.D., Classification and nomenclature of the pyrochlore group, Am. Mineral., 1977, vol. 62, pp. 403–410.

    Google Scholar 

  23. Hogarth, D.D., Chemical trends in the Meech Lake, Quebec, carbonatites and fenites, Can. Mineral., 2016, vol. 54, pp. 1105–1128.

    Article  Google Scholar 

  24. Huang, X.L., Wang, R.Ch., Chen, X.M., Hu, H., and Liu, Ch.S., Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China, Can. Mineral., 2002, vol. 40, pp. 1047–1068.

    Article  Google Scholar 

  25. Huang, F.F., Wang, R.Ch., Xie, L., Zhu, J.C., Erdmann, S., Che, X.D., and Zhang, R.Q., Differentiated rare-element mineralization in an ongonite-topazite composite dike at the Xianghualing tin district, Southern China: an electron-microprobe study on the evolution from niobium–tantalum-oxides to cassiterite, Ore Geol. Rev., 2015, vol. 65, pp. 761–778.

    Article  Google Scholar 

  26. Konovalenko, S.I., Voloshin, A.V., Pahomovskij, J.A., Rossovskij, L.N., and Anan’yev S.A. Tungsten-containing phases of tantalum–niobates from miarolitic granite pegmatite in Southwest Pamir,Mineral. J., 1982, vol. 4, no. 1, pp. 65–74.

    Google Scholar 

  27. Krivovichev, V.G., Mineralogicheskii slovar’ (Mineralogical dictionary), Saint Petersburg: Saint Petersburg University, 2008.

  28. Kuzmenko, M.V. and Eskova, E.M., Tantal i niobii (Tantalum and Niobium), Moscow: Nauka, 1968.

  29. Lapin, A.V. and Kulikova, I.M., Ontogenic types of zonality in crystals of pyrochlore from carbonatites and their diagnostics, Zap. Ross. Mineral. O-va, 2000, no. 1, pp. 75–82.

  30. Li, G., Yang, G., Lu, F., Xiong, M., Ge, X., Pan, B., and De Fourestier, J., Fluorcalciopyrochlore, a new mineral species from Bayan Obo, Inner Mongolia, P. R. China, Can. Mineral., 2016, vol. 54, pp. 1278–1284.

    Google Scholar 

  31. Lumpkin, G.R. and Ewing, R.C., Geochemical alteration of pyrochlore group minerals: betafite subgroup, Am. Mineral., 1995, vol. 81, pp. 1237–1248.

    Article  Google Scholar 

  32. Marchenko, E.J. and Konkov, G.G., Ongonites of the Ukrainian shield, Doklady USSR Acad. Sci., 1988, vol. 299, no. 1, pp. 186–189.

    Google Scholar 

  33. Marin, Yu.B., Skublov, G.T., and Gulbin, Yu.L., Mineralogical and geochemical criteria for local forecasting of rare metal deposits, in Mineralogicheskoe kartirovania I indicatory orudeneniya (Mineralogical Mapping and Indicators of Mineralization), Leningrad: Nauka, 1990, pp. 67–94.

    Google Scholar 

  34. Melcher, F., Graupner, T., Gabler, H.E., Sitnikova, M., Oberthur, T., Gerdes, A., Badanina, E., and Chudy, T., Mineralogical and chemical evolution of tantalum-(niobium-tin) mineralization in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns, Ore Geol. Rev., 2017, vol. 89, pp. 946–987.

    Article  Google Scholar 

  35. Nasraoui, M. and Bilal, E., Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): a geochemical record of different alteration stages, J. Asian Earth Sci., 2000, vol. 18, pp. 237–251.

    Article  Google Scholar 

  36. Orajaka, L.P., Geochemistry of Kaffo valley albite-ribekite granite. Liruei Granite Rinc-Complex. Northern Nigeria, Chem. Geol, 1986, vol. 56, pp. 85–92.

    Article  Google Scholar 

  37. Rub, A.K. and Rub, M.G., Redkometal’nye granity Primor’ya (Rare-metal Granite of Primorye), Moscow: VIMS, 2006.

  38. Semenov, E.I., Orudenenie I mineralizatsiya redkikh zemel, toriya i urana (lantanidov i aktinidov) (Ores and Mineralization of Rare Earths, Thorium and Uranium (Lanthanides and Actinides), Moscow: GEOS, 2001.

  39. Šemenyak, B.I., About “zwitters” of the Verkhneurmiyskiy ore field, Rudnye mestorozhdeniya Dal’nego Vostoka (Far East Ore Deposits),Vladivostok, 1983, pp. 20–25.

    Google Scholar 

  40. Skorobogatova, N.V., Sidorenko, G.A., Dorofeeva, K.A., and Stolyarova, T.I., About a plumbopyrochlore, Geologiya mestorozhdenii redkikh elementov (Geology of Trace Elements Ore Deposits), 1966, vol. 30, pp. 84–95.

  41. Štemprok, M., Ongonite from Ongon Khairkhan, Mongolia, Mineral. Petrol., 1991, vol. 43, no. 4, pp. 255–273.

    Article  Google Scholar 

  42. Tindle, A.G. and Breaks, F.W., Oxide minerals of the Separation Rapids rare-element granitic pegmatite group, northwestern Ontario, Can. Mineral., 1998, vol. 36, pp. 609–635.

    Google Scholar 

  43. Vasiljev, N.V., Chevychelov, V.Yu., Zaraisky, G.P., Borodulin, G.P., and Udoratina, O.V., Peculiarities of tantalium–niobium mineralization of Taikeusky ore knot (Polar Urals), Zap. Ross. Mineral. O-va, 2008, no. 5, pp. 1–16.

  44. Vladykin, N.V., Mineralogo-geokhimicheskie osobennosti redkometall’nykh granitoidov Mongolii (Mineral-Geochemical Features of Rare-Metal Granitoids of Mongolia), Novosibirsk: Nauka, 1983.

  45. Voloshin, A.V. and Pakhomovskiy, J.A., Mineraly i evolyutsiya mineraloobrazovaniya v amazonitovykh pegmatitakh Kol’skogo poluostrova (Minerals and Evolution of Mineral Foramtion in Amazonite Pegmatites from the Kola Peninsula), Leningrad: Nauka, 1986.

  46. Voloshin, A.V., Tantalo-niobaty. Sistematika, kristallokhimiya i evolyutsiya mineraloobrazovaniya v granitnykh pegmatitakh (Tantalates and Niobates. Systematics, Crystal Chemistry and Evolution of Mineral Formation in Granite Pegmatites), Saint Petersburg: Nauka, 1993.

  47. Wall, F., Williams, C.T., and Wolley, A.R., Pyrochlore from weathered carbonatite at Lueshe, Zaire, Mineral. Mag., 1996, vol. 60, pp. 731–750.

    Article  Google Scholar 

  48. Williams, P.A., Leverett, J.L., Sharpe, L., and Colchester, D.M., Elsmoreite, cubic WO3 · 0.5H2O, a new mineral species from Elsmore, New South Wales, Australia, Can. Mineral., 2005, vol. Vol. 43, pp. 1061–1064.

  49. Zaitsev, A.N., Williams, Ch.T., Wall, F., and Zolotarev, A.A., Evolution of chemical composition of the pyrochlore group minerals in phoscorites and carbonatites of Khibiny alkaline massif, Geol. Ore Deposits, 2012, vol. 54, no. 7, pp. 503–515.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.G. Bulakh and V.G. Krivovichev, St. Petersburg State University, for their comments and recommendations.

Funding

This study has been supported by the Russian Foundation for Basic Research (project no. 14-05-00364) and Ministry of Science and Education (State target 5.9248.2017/6.7 for 2017–2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Alekseev.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, V.I., Marin, Y.B. Compositional Variations of Pyrochlore Group Minerals in Ongonite and Zwitter of the Verkhneurmiysky Pluton, Russian Far East. Geol. Ore Deposits 61, 654–662 (2019). https://doi.org/10.1134/S107570151907002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107570151907002X

Keywords:

Navigation