Skip to main content
Log in

Quintinite-1M from the Mariinsky Deposit, Ural Emerald Mines, Central Urals, Russia

  • Minerals and Mineral Parageneses
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The paper describes the first finding of quintinite [Mg4Al2(OH)12][(CO3)(H2O)3] at the Mariinsky deposit in the Central Urals, Russia. The mineral occurs as white tabular crystals in cavities within altered gabbro in association with prehnite, calcite, and a chlorite-group mineral. Quintinite is the probable result of late hydrothermal alteration of primary mafic and ultramafic rocks hosting emerald-bearing glimmerite. According to electron microprobe data, the Mg: Al ratio is ~2: 1. IR spectroscopy has revealed hydroxyl and carbonate groups and H2O molecules in the mineral. According to single crystal XRD data, quintinite is monoclinic, space group C2/m, a =5.233(1), b = 9.051(2), c = 7.711(2) Å, β = 103.09(3)°, V = 355.7(2) Å3. Based on structure refinement, the polytype of quintinite should be denoted as 1M. This is the third approved occurrence of quintinite-1M in the world after the Kovdor complex and Bazhenovsky chrysotile–asbestos deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakcheeva, A.V., Pushcharovskii, D.Yu., Atencio, D., and Lubman, G.U., Crystal structure and comparative crystal chemistry of Al2Mg4(OH)12(CO3) · 3H2O, a new mineral from the hydrotalcite–manasseite group, Crystallogr. Rep., 1996, vol. 41, pp. 972–981.

    Google Scholar 

  • Bonaccorsi, E., Merlino, S., and Orlandi, P., Zincalstibite, a new mineral, and cualstibite: crystal chemical and structural relationships, Am. Mineral., 2007, vol. 92, pp. 198–203.

    Article  Google Scholar 

  • Braithwaite, R.S.W., Dunn, P.J., Pritchard, R.G., and Paar, W.H., Iowaite, a re-investigation, Mineral. Mag., 1994, vol. 58, pp. 79–85.

    Article  Google Scholar 

  • Britvin, S.N. Structural diversity of layered double hydroxides, in Minerals as Advanced Materials, Krivovichev S. V., Ed., Berlin: Springer, 2008, pp. 123–128.

    Chapter  Google Scholar 

  • Chao, G.Y. and Gault, R.A., Quintinite-2H, quintinite-3T, charmarite-2H, charmarite-3T, and caresite-3T, a new group of carbonate minerals related to the hydrotalcite/ manasseite group, Can. Mineral., 1997, vol. 35, pp. 1541–1549.

    Google Scholar 

  • Chukanov, N.S. and Chervonnyi, A.D., Infrared Spectroscopy of Minerals and Related Compounds, Springer Mineralogy, 2016.

    Book  Google Scholar 

  • Cooper, M.A. and Hawthorne, F.C., The crystal structure of shigaite, [AlMn2(OH)6]3(SO4)2Na(H2O)6{H2O}6, a hydrotalcite-group mineral, Can. Mineral., 1996, vol. 34, pp. 91–97.

    Google Scholar 

  • Drits, V.A., Sokolova, T.N., Sokolova, G.V., and Cherkashin, V.I., New members of the hydrotalcite–manasseite group. Clays Clay Miner., 1987, vol. 35, no. 6, pp. 401–417.

    Article  Google Scholar 

  • Feoktistov, G.D., Ivanov, S.I., Kashaev, A.A., Klyuchisnkiy, L.N., Taskina, N.G., and Ushchapovskaya, Z.F., On the finding of chlor-manasseite in the USSR, Zap. Ross. Mineral. O-va, 1978, vol. 107, no. 3, pp. 321–325.

    Google Scholar 

  • Huminicki, D.M.C. and Hawthorne, F.C., The crystal structure of nikischerite, NaFeAl3(SO4)2(OH)18(H2O)12, a mineral of the shigaite group, Can. Mineral., 2003, vol. 41, pp. 79–82.

    Article  Google Scholar 

  • Koch, C.B., Structures and properties of anionic clay minerals, Hyperfine Interact., 1998, vol. 117, no. 1, pp. 131–157.

    Article  Google Scholar 

  • Kolitsch, U., Giester, G., and Pippinger, T., The crystal structure of cualstibite-1M (formerly cyanophyllite), its revised chemical formula and its relation to cualstibite-1T, Mineral. Petrol., 2013, vol. 107, pp. 171–178.

    Article  Google Scholar 

  • Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A., and Ivanyuk, G.Y., Crystal chemistry of natural layered double hydroxides. 1. Quintinite-2H-3c from the Kovdor alkaline massif, Kola Peninsula, Russia, Mineral. Mag., 2010a, vol. 74, no. 5, pp. 821–832.

    Article  Google Scholar 

  • Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A., and Ivanyuk, G.Yu., Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M: first evidence of a monoclinic polytype in M2+–M3+ layered double hydroxides, Mineral. Mag., 2010b, vol. 74, no. 5, pp. 833–840.

    Article  Google Scholar 

  • Krivovichev, S.V., Antonov, A.A., Zhitova, E.S., Zolotarev, A.A., Krivovichev, V.G., and Yakovenchuk, V.N., Quintinite-1M from Bazhenovskoe deposit (Middle Urals, Russia): crystal structure and properties, Vestn. St. Peterburg. Gos. Univ., Ser. 7, Geol. Geogr., 2012, vol. 7, no. 2, pp. 3–9.

    Google Scholar 

  • Layered Double Hydroxides. Structure and Bonding, Duan, X. and Evans, D.G., Eds., Berlin: Springer, 2006.

  • Lisitsina, V.A., Drits, V.A., Sokolova, G.V., and Aleksandrova, V.A., New complex of secondary minerals-products of low temperature transformations of rocks, covering basalts of Atlantic Ocean underwater mountains, Litol. Polezn. Iskop., 1985, vol. 6, pp. 20–39.

    Google Scholar 

  • Mills, S.J., Christy, A.G., Genin, J.-M.R., Kameda, T., and Colombo, F., Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides, Mineral. Mag., 2012a, vol. 76, pp. 1289–1336.

    Article  Google Scholar 

  • Mills, S.J., Christy, A.G., Kampf, A.R., Housley, R.M., Favreau, G., Boulliard, J.-C., and Bourgoin, V., Zincalstibite-9R: the first nine-layer polytype with the layered double hydroxide structure-type, Mineral. Mag., 2012b, vol. 76, pp. 1337–1345.

    Article  Google Scholar 

  • Mills, S.J., Kampf, A.R., Housley, R.M., Favreau, G., Pasero, M., Biagioni, C., Merlino, S., Berbain, C., and Orlandi, P., Omsite, (Ni,Cu)2Fe3+(OH)6[Sb(OH)6], a new member of the cualstibite group from Oms, France, Mineral. Mag., 2012c, vol. 76, pp. 1347–1354.

    Article  Google Scholar 

  • Mills, S.J., Whitfield, P.S., Kampf, A.R., Wilson, S.A., Dipple, G.M., Raudsepp, M., and Favreau, G., Contribution to the crystallography of hydrotalcites: the crystal structures of woodallite and takovite, J. Geosci., 2012d, vol. 58, pp. 273–279.

    Google Scholar 

  • Rajamathi, M., Thomas, G.S., and Kamath, P.V., The many ways of making anionic clays, J. Chem. Sci, 2001, vol. 113, no. 5, pp. 671–680.

    Article  Google Scholar 

  • Reichle, W.T., Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite), Solid State Ionics, 1986, vol. 22, no. 1, pp. 135–141.

    Article  Google Scholar 

  • Rius, J. and Allmann, R., The superstructure of the double layer mineral wermlandite, [Mg7(Al0.57, Fe0.43 3+)(OH)0.43)2]2+[(Ca0.6,Mg0.4)(SO4)2(H2O)12]2–, locality: Langban, Warmland, Sweden, Z. Kristallogr., 1984, vol. 168, pp. 133–144.

    Article  Google Scholar 

  • Sacerdoti, M. and Passaglia, E., Hydrocalumite from Latium, Italy: its crystal structure and relationship with related synthetic phases, N. Jb. Miner. Monatsch., 1988, pp. 462–475.

    Google Scholar 

  • Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., 1970, vol. A32, pp. 751–767.

    Google Scholar 

  • Sheldrick, G.M., A short history of SHELX, Acta Crystallogr., 2008, vol. A64, pp. 112–122.

    Article  Google Scholar 

  • Taylor, S.R., Abundance of chemical elements in the continental crust: a new table, Geochim. Cosmochim. Acta, 1964, vol. 28, pp. 1273–1285.

    Article  Google Scholar 

  • Theiss, F., Lopez, A., Frost, R.L., and Scholz, R., Spectroscopic characterisation of the LDH mineral quintinite Mg4Al2(OH)12CO3 · 3H2O, Spectrochim. Acta A, 2015, vol. 150, pp. 758–64.

    Article  Google Scholar 

  • Walenta, K., Cualstibite, a new secondary mineral from the Clara mine in the Central Black Forest (FRG), Chem. Erde, 1984, vol. 43, pp. 255–260.

    Google Scholar 

  • Zhitova, E.S., Crystal chemistry of natural layered double hydroxides, Saint Petersburg State University Studies in Earth Sciences, St. Petersburg University Press, 2013, vol. 1.

  • Zhitova, E.S., Yakovenchuk, V.N., Krivovichev, S.V., Zolotarev, A.A., Pakhomovsky, Y.A., and Ivanyuk, G.Y., Crystal chemistry of natural layered double hydroxides. 3. The crystal structure of Mg, Al-disordered quintinite-2H, Mineral. Mag., 2010, vol. 74, no. 5, pp. 841–848.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Zhitova.

Additional information

Original Russian Text © E.S. Zhitova, M.P. Popov, S.V. Krivovichev, A.N. Zaitsev, N.S. Vlasenko, 2016, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2016, No. 6, pp. 90–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhitova, E.S., Popov, M.P., Krivovichev, S.V. et al. Quintinite-1M from the Mariinsky Deposit, Ural Emerald Mines, Central Urals, Russia. Geol. Ore Deposits 59, 745–751 (2017). https://doi.org/10.1134/S1075701517080116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701517080116

Keywords

Navigation