Skip to main content
Log in

Concentration of ore elements in magmatic melts and natural fluids as deduced from data on inclusions in minerals

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Based on intergration of the published data on composition of inclusions in minerals and quenched glasses, the mean concentrations of 24 ore elements have been calculated for magmatic silicate melts formed in main geodynamic settings of the Earth and in natural fluids. The mean glass compositions normalized to the primitive mantle correlate with the partition coefficient between olivine and the basic melt. It is established that the degree of enrichment in ore elements depending on geodynamic setting is controlled by various contribution of fluids to the element transfer and accumulation. The ratios of element contents in each geodynamic setting to the mean concentrations of elements over all settings in the Earth have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J. and Green, T., Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour, Contrib. Mineral. Petrol., 2006, vol. 152, pp. 1–17.

    Article  Google Scholar 

  • Allan, M.M., Morrison, G.W., and Yardley, B.W.D., Physicochemical evolution of a porphyry-breccia system: a laser ablation ICP-MS study of fluid inclusions in the Mount Leysbon Au Deposit, Queensland, Australia, Econ. Geol., 2011, vol. 106, pp. 413–436.

    Article  Google Scholar 

  • Anderson, A.T., Davis, A.M., and Lu, F., Evolution of Bishop tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts, J. Petrol., 2000, vol. 41, pp. 449–473.

    Article  Google Scholar 

  • Arevalo, R., Jr., McDonough, W.F., and Luong, M., The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution, Earth Planet. Sci. Lett., 2009, vol. 278, pp. 361–369.

    Article  Google Scholar 

  • Audetat, A. and Pettke, T., The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA), Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 97–121.

    Article  Google Scholar 

  • Audetat, A. and Pettke, T., Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA), J. Petrol., 2006, vol. 47, pp. 2021–2046.

    Article  Google Scholar 

  • Audetat, A., Pettke, T., Heinrich, C.A., and Bodnar, R.J., The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions, Econ. Geol., 2008, vol. 103, pp. 877–908.

    Article  Google Scholar 

  • Audetat, A., Source and evolution of molybdenum in the porphyry Mo(-Nb) deposit at Cave Peak, Texas, J. Petrol., 2010, vol. 51, pp. 1739–1760.

    Article  Google Scholar 

  • Audetat, A., Dolejs, D., and Lowenstern, J.B., Molybdenite saturation in silicic magmas: occurrence and petrological implications, J. Petrol., 2011, vol. 52, pp. 891–904.

    Article  Google Scholar 

  • Baker, T., Ebert, S., Rombach, C., and Ryan, C.G., Chemical compositions of fluid inclusions in intrusion-related gold systems, Alaska and Yukon, using PIXE microanalysis, Econ. Geol., 2006, vol. 101, pp. 311–327.

    Article  Google Scholar 

  • Baker, T., Mustard, R., Fu, B., et al., Mixed messages in iron–copper–gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions, Mineral. Deposita, 2008, vol. 43, pp. 599–608.

    Article  Google Scholar 

  • Beaudoin, Y., Scott, S.D., Gorton, M.P., et al., Pb and other ore metals in modem seafloor environments: evidence from melt inclusions, Mar. Geol., 2007, vol. 242, pp. 271–289.

    Article  Google Scholar 

  • Berlo, K., Tuffen, H., Smith, V.C., et al., Element variations in rhyolitic magma resulting from gas transport, Geochim. Cosmochim. Acta, 2013, vol. 121, pp. 436–451.

    Article  Google Scholar 

  • Beuchat, S., Moritz, R., and Pettke, T., Fluid evolution in the W–Cu–Zn–Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence, Chem. Geol., 2004, vol. 210, pp. 201–24.

    Article  Google Scholar 

  • Bortnikov N.S., Kovalenko V.I., Lykhin D.A. et al., Fundamental principles of the formation of gold and rare-metal resource base of Russia: models of deposits, ore sources, and geodynamic settings, in Fundamental’nye osnovy formirovaniya resursnoi bazy strategicheskogo syr’ya (Au, Ag, Pt, Cu, redikie elementy i metally (Fundamental Principles of the Formation of Resource Base of Strategic Raw Material (Au, Ag, Pt, Cu, rare elements and metals), Moscow: GEOS, 2012.

    Google Scholar 

  • Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., et al., The Sarylakh and Sentachan gold—antimony deposits, Sakha-Yakutia: a case of combined mesothermal gold— quartz and epithermal stibnite ores, Geol. Ore Deposits, 2010, vol. 52, pp. 339–372.

    Article  Google Scholar 

  • Bouvier, A.-S., Deloule, E., and Metrich, N., Fluid inputs to magma sources of St. Vincent and Grenada (Lesser Antilles): new insights from trace elements in olivinehosted melt inclusions, J. Petrol., 2010, vol. 51, pp. 1597–1615.

    Article  Google Scholar 

  • Castillo, P.R., Klein, E., Bender, J., et al., Petrology and Sr, Nd, and Pb isotope geochemistry of mid-ocean ridge basalt glasses from the 11°45' N to 15°00' N segment of the East Pacific Rise, Geochem. Geophys. Geosyst., 2000, vol. 1.

  • Caulfield, J.T., Turner, S.P., Smith, I.E.M., et al., Magma evolution in the primitive, intra-oceanic Tonga arc: petrogenesis of basaltic andesites at Tofua volcano, J. Petrol., 2012, vol. 53, pp. 1197–1230.

    Article  Google Scholar 

  • Collins, S.J., Pyle, D.M., and Maclennan, J., Melt inclusions track pre-eruption storage and dehydration of magmas at Etna, Geology, 2009, vol. 37, pp. 571–574.

    Article  Google Scholar 

  • Cottrell, E. and Kelley, K.A., The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle, Earth Planet. Sci. Lett., 2011, vol. 305, pp. 270–82.

    Article  Google Scholar 

  • Danyushevsky, L.V., Eggins, S.M., Falloon, T.J., and Christie, D.M., H2O abundance in depleted to moderately enriched mid-ocean ridge magmas. Part I: incompatible behavior, implications for mantle storage, and origin of regional variations, J. Petrol., 2000, vol. 41, pp. 1329–1364.

    Article  Google Scholar 

  • Devey, C.W., Albarede, F., Cheminee, J.-L., et al., Active submarine volcanism on the society hotspot swell (West Pacific): a geochemical study, J. Geophys. Res., 1990, vol. 95, no. B4, pp. 5049–5066.

    Article  Google Scholar 

  • Field, L., Blundy, J., Brooker, R.A., et al., Magma storage conditions beneath Dabbahu volcano (Ethiopia) constrained by petrology, seismicity and satellite geodesy, Bull. Volcanol., 2012, vol. 74, pp. 981–1004.

    Article  Google Scholar 

  • Frey, F.A., Pringle, M., Meleney, P., et al., Diverse mantle sources for Ninetyeast Ridge magmatism: geochemical constraints from basaltic glasses, Earth Planet. Sci. Lett., 2011, vol. 303, pp. 215–224.

    Article  Google Scholar 

  • Fusswinkel, T., Wagner, T., Wenzel, T., et al., Red bed and basement sourced fluids recorded in hydrothermal Mn-Fe-As veins, Sailauf (Germany): a LA-ICPMS fluid inclusion study, Chem. Geol., 2014, vol. 363, pp. 22–39.

    Article  Google Scholar 

  • Girnis, A.V., Olivine–orthopyroxene–melt equilibrium as a thermobarometer for mantle-derived magmas, Petrology, 2003, vol. 11, pp. 101–113.

    Google Scholar 

  • Goss, A.R., Perfit, M.R., Ridley, W.I., et al., Geochemistry of lavas from the 2005-2006 eruption at the East Pacific Rise, 9°46' N–9°56' N: implications for ridge crest plumbing and dacadal changes in magma chamber compositions, Geochem. Geophys. Geosyst., 2010, vol. 11, no. 5, pp. 1–35.

    Article  Google Scholar 

  • Gray, T.R., Hanley, J.J., Dostal, J., and Guillong, M., Magmatic enrichment of uranium, thorium, and rare earth elements in Late Paleozoic rhyolites of southern New Brunswick, Canada: evidence from silicate melt inclusions, Econ. Geol., 2011, vol. 106, pp. 127–143.

    Article  Google Scholar 

  • Gurenko, A.A. and Sobolev, A.V., Crust-primitive magma interaction beneath neovolcanic rift zone of Iceland recorded in gabbro xenoliths from Midfell, SWIceland, Contrib. Mineral. Petrol., 2006, vol. 151, pp. 495–520.

    Article  Google Scholar 

  • Guzmics, T., Mitchell, R.H., Szabo, C., et al., Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi Volcano (Tanzania): evolution of carbonated nephelinitic magma, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 101–122.

    Article  Google Scholar 

  • Halter, W.E., Heinrich, C.A., and Pettke, T., Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex II: evidence for magma mixing and magma chamber evolution, Contrib. Mineral. Petrol., 2004, vol. 147, pp. 397–412.

    Article  Google Scholar 

  • Hammer, J.E., Coombs, M.L., Shamberger, P.J., and Kimura, J.-I., Submarine sliver in North Kona: a window into the early magmatic and growth history of Hualalai Volcano, Hawaii, J. Volcanol. Geotherm. Res., 2006, vol. 151, pp. 157–188.

    Article  Google Scholar 

  • Hammerli, J., Rusk, B., Spandler, C., et al., In situ quantification of Br and Cl in minerals and fluid inclusions by LAICP-MS: a powerful tool to identify fluid sources, Chem. Geol., 2013, vol. 337–338, pp. 75–87.

    Article  Google Scholar 

  • Hanley, J., Ames, D., Barnes, J., et al., Interaction of magmatic fluids and silicate melt residues with saline groundwater in the footwall of the Sudbury igneous complex, Ontario, Canada: new evidence from bulk rock geochemistry, fluid inclusions and stable isotopes, Chem. Geol., 2011, vol. 281, pp. 1–25.

    Article  Google Scholar 

  • Hawkins, J.W., Lonsdale, P.F., Macdougall, J.D., and Volpe, A.M., Petrology of the axial ridge of the Mariana trough back-arc spreading center, Earth Planet. Sci. Lett., 1990, vol. 100, pp. 226–250.

    Article  Google Scholar 

  • Hedenquist, J.W. and Lowenstern, J.B., The role of magmas in the formation of hydrothermal ore deposits, Nature, 1994, vol. 370, pp. 519–527.

    Article  Google Scholar 

  • Holwell, D.A., McDonald, I., and Butler, I.B., Precious metal enrichment in the platreef, Bushveld Complex, South Africa: evidence from homogenized magmatic sulfide melt inclusions, Contrib. Mineral. Petrol., 2011, vol. 161, pp. 1011–1026.

    Article  Google Scholar 

  • Hurtic, N.C., Heinrich, C.A., Driesner, Y., et al., Fluid evolution and uranium (-Mo-F) mineralization at the Maureen Deposit (Queensland, Australia): unconformityrelated hydrothermal ore formation with a source in the volcanic cover sequence, Econ. Geol., 2014, vol. 109, pp. 737–773.

    Article  Google Scholar 

  • Jenner, F.E., O’Neill, H.St.C., Arculus, R.J., and Mavrogenes, J.A., The magnetite crisis in the evolution of arcrelated magmas and the initial concentration of Au, Ag and Cu, J. Petrol., 2010, vol. 51, pp. 2445–2464.

    Article  Google Scholar 

  • Jenner, F.E. and O’Neill, H.Sr.C., Analysis of 60 elements in 616 ocean floor basaltic glasses, Geochem. Geophys. Geosyst., 2012, vol. 13, pp. 1–11.

    Article  Google Scholar 

  • Jenner, F.E., Arculus, R.J., Mavrogenes, J.A., et al., Chalcophile element systematics in volcanic glasses from the northwestern Lau Basin, Geochem. Geophys. Geosyst., 2012, vol. 13, no. 6, pp. 1–25.

    Article  Google Scholar 

  • Johnson, E.R., Kamenetsky, V.S., and McPhie, J., The behavior of metals (Pb, Zn, As, Mo, Cu) during crystallization and degassing of rhyolites from the Okataina volcanic center, Taupo volcanic zone, New Zealand, J. Petrol., 2013, vol. 54, pp. 1641–1659.

    Article  Google Scholar 

  • Jordan, B.R., Sigurdsson, H., Carey, S.N., et al., Geochemical variation along and across the Central American Miocene paleoarc in Honduras and Nicaragua, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 3581–3591.

    Article  Google Scholar 

  • Kamenetsky, V.S. and Eggins, S.M., Systematics of metals, metalloids, and volatiles in MORB melts: effects of partial melting, crystal fractionation and degassing (a case study of Macquarie island glasses), Chem. Geol., 2012, vol. 302-303, pp. 76–86.

    Article  Google Scholar 

  • Klemm, L.M., Pettke, T., Heinrich, C.A., and Campos, E., Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu–Mo ore deposition from low-salinity magmatic fluids, Econ. Geol., 2007, vol. 102, pp. 1021–1045.

    Article  Google Scholar 

  • Konig, S., Munker, C., Hohl, S., et al., The Earth’s tungsten budget during mantle melting and crust formation, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 2119–2136.

    Article  Google Scholar 

  • Kotzeva, B.G., Guillong, M., Stefanova, E., and Piperov, N.B., LA-ICP-MS analysis of single fluid inclusions in a quartz crystal (Madan ore district, Bulgaria), J. Geochem. Explor., 2011, vol. 108, pp. 163–175.

    Article  Google Scholar 

  • Kouzmanov, K., Pettke, T., and Heinrich, C., Direct analysis of ore-precipitating fluids: combined IRmicroscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals, Econ. Geol., 2010, vol. 105, pp. 351–373.

    Article  Google Scholar 

  • Kovalenker, V.A., Conditions of formation and factors of large-scale gold accumulation in porphyritic and epithermal deposits, in Krupnye i superkrupnye mestorozhdeniya rudnykh poleznykh iskopaemykh (Large and Superlarge Ore Deposits), Moscow: IGEM RAN, 2006, vol. 2, pp. 143–214.

    Google Scholar 

  • Kovalenko, V.I., Naumov, V.B., Girnis, A.V., et al., Average compositions of magmas and mantle sources of mid-ocean ridges and intraplate oceanic and continental settings estimated from the data on melt inclusions and quenched glasses of basalts, Petrology, 2007, vol. 15, pp. 335–368.

    Article  Google Scholar 

  • Kurosawa, M., Ishi, S., and Sasa, K., Trace-element compositions of single fluid inclusions in the Kofu granite, Japan: implications for compositions of granite-derived fluids, Island Arc, 2010, vol. 19, pp. 40–59.

    Article  Google Scholar 

  • Lang, J.L. and Baker, T., Intrusion-related gold systems: the present level of understanding, Mineral. Deposita, 2001, vol. 36, pp. 477–489.

    Article  Google Scholar 

  • Laubier, M., Gale, A., and Langmuir, C.H., Melting and crustal processes at the famous segment (Mid-Atlantic Ridge): new insights from olivine-hosted melt inclusions from multiple samples, J. Petrol., 2012, vol. 53, pp. 665–698.

    Article  Google Scholar 

  • Le Fort, D., Hanley, J., and Guillong, M., Subepithermal au–pd mineralization associated with an alkalic porphyry Cu–Au deposit, Mount Milligan, Quesnel terrane, British Columbia, Canada, Econ. Geol., 2011, vol. 106, pp. 781–808.

    Article  Google Scholar 

  • Leisen, M., Dubessy, J., Boiron, M.-C., and Lach, P., Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICP-MS and Pitzer thermodynamic modeling of ice melting temperature, Geochim. Cosmochim. Acta, 2012, vol. 90, pp. 110–125.

    Article  Google Scholar 

  • Lerchbaumer, L. and Audetat, A., The metal content of silicate melts and aqueous fluids in subeconomically Mo mineralized granites: implications for porphyry Mo genesis, Econ. Geol., 2013, vol. 108, pp. 987–1013.

    Article  Google Scholar 

  • Li, N., Ulrich, T., Chen, Y.J., et al., Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China, Ore Geol. Rev., 2012, vol. 48, pp. 442–459.

    Article  Google Scholar 

  • Liu, Y., Anderson, A.T., Wilson, C.J.N., et al., Mixing and differentiation in the Oruanui rhyolitic magma, Taupo, New Zealand: evidence from volatiles and trace elements in melt inclusions, Contrib. Mineral. Petrol., 2006, vol. 151, pp. 71–87.

    Article  Google Scholar 

  • Luders, V., Romer, R.L., Gilg, H.A., et al., A geochemical study of the Sweet Home Mine, Colorado mineral belt, USA: hydrothermal fluid evolution above a hypothesized granite cupola, Mineral. Deposita, 2009, vol. 44, pp. 415–434.

    Article  Google Scholar 

  • MacLennan, J. Concurrent mixing and cooling of melts under Iceland, J. Petrol., 2008. V. 49. P. 1931–1953.

    Article  Google Scholar 

  • Mao, J., Pirajno, F., Lehmann, B., et al., Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings, J. Asia Earth Sci., 2014, vol. 79, pp. 576–584.

    Article  Google Scholar 

  • Marsala, R., Wagner, T., and Walle, M., Late-metamorphic veins record deep ingression of meteoric water: a LAICPMS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany, Chem. Geol., 2013, vol. 351, pp. 134–153.

    Article  Google Scholar 

  • McPhie, J., Kamenetsky, V., Allen, S., et al., The fluorine link between a supergiant ore deposit and a silicic large igneous province, Geology, 2011, vol. 39, pp. 1003–1006.

    Article  Google Scholar 

  • Meinert, L.D., Hedenquist, J.W., Saton, H., and Matsuhisa, Y., Formation of anhydrous and hydrous skarn in Cu–Au ore deposits by magmatic fluids, Econ. Geol., 2003, vol. 98, pp. 147–156.

    Article  Google Scholar 

  • Metrich, N., Zanon, V., Creon, L., et al., Is the “Azores” “hotspot” a wetspot? Insights from the geochemistry of fluid and melt inclusions in olivine of Pico Basalts, J. Petrol., 2014, vol. 55, pp. 377–393.

    Article  Google Scholar 

  • Miron, G.D., Wagner, T., Walle, M., and Heinrich, C.A., Major and trace-element composition and pressure-temperature evolution of rock-buffered fluids in low-grade accretionary-wedge metasediments, Central Alps, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 981–1008.

    Article  Google Scholar 

  • Muller, D. and Forrestal, P., The shoshonite porphyry Cu–Au association at Bajo de La Alumbdrera, Catamarca Province, Argentina, Mineral. Petrol. 1998, vol. 64, pp. 47–64.

    Article  Google Scholar 

  • Mungall, J.E., Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 2002, vol. 30, pp. 915–918.

    Article  Google Scholar 

  • Mustard, R., Ulrich, T., Kamenetsky, V., and Mernagh, T., Gold and metal enrichment in natural granitic melts during fractional crystallization, Geology, 2006, vol. 34, pp. 85–88.

    Article  Google Scholar 

  • Nadeau, O., Stix, J., and Williams-Jones, A.E., The behavior of Cu, Zn and Pb during magmatic-hydrothermal activity at Merapi volcano, Indonesia, Chem. Geol., 2013, vol. 342, pp. 167–179.

    Article  Google Scholar 

  • Naumov, V.B., Kovalenko, V.I., Dorofeeva, V.A., and Yarmolyuk, V.V., Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings, Geochem. Int., 2004, vol. 42, no. 10, pp. 977–987.

    Google Scholar 

  • Naumov, V.B., Kovalenko, V.I., Dorofeeva, V.A., et al., Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks, Geochem. Int., 2010, vol. 48, no. 12, pp. 1185–1207.

    Article  Google Scholar 

  • Naumov, V.B., Dorofeeva, V.A., Girnis, A.V., and Yarmolyuk, V.V., Comparison of major, volatile, and trace element contents in the melts of mid-ocean ridges on the basis of data on inclusions in minerals and quenched glasses of rocks, Geochem. Int., 2014, vol. 52, no. 5, pp. 347–364.

    Article  Google Scholar 

  • Neave, D.A., Fabbro, G., Herd, R.A., et al., Melting, differentiation and degassing at the Pantelleria volcano, Italy, J. Petrol., 2012, vol. 53, pp. 637–663.

    Article  Google Scholar 

  • Nikogosian, I.K., Bergen van, M.J., Heterogeneous mantle sources of patassium-rich magmas in Central-Southern Italy: melt inclusion evidence from Roccamonfina and Ernici (Mid Latina Valley), J. Volcanol. Geotherm. Res., 2010, vol. 197, pp. 279–302.

    Article  Google Scholar 

  • Niu, Y., Waggoner, D.G., Sinton, J.M., and Mahoney, J.J., Mantle source heterogeneity and melting processes beneath seafloor centers: the East Pacific Rise, 18°–19° S, J. Geophys. Res., 1996, vol. 101, no. B12, pp. 27711–27733.

    Article  Google Scholar 

  • Niu, Y. and Batiza, R., Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle, Earth Planet. Sci. Lett., 1997, vol. 148, pp. 471–483.

    Article  Google Scholar 

  • Palme, H. and O’Neill, H.St.C., Cosmochemical estimates of mantle composition, in Treatise on geochemistry, Amsterdam: Elsevier, 2003, vol. 2.

  • Perugini, D. and Poli, G., Analysis and numerical simulation of chaotic advection and chemical diffusion during magma mixing: petrological implications, Lithos, 2004, vol. 78, pp. 43–66.

    Article  Google Scholar 

  • Pettke, T., Oberli, F., Audetat, A., et al., Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS, Ore Geol. Rev, 2012, vol. 44, pp. 10–38.

    Article  Google Scholar 

  • Pritchard, C.J. and Larson, P.B., Genesis of post-caldera eastern upper basin member rhyolites, Yellowstone, WY: from volcanic stratigraphy, geochemistry, and radiogenic isotope modeling, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 205–228.

    Article  Google Scholar 

  • Pudack, C., Halter, W.E., Heinrich, C.A., and Pettke, T., Evolution of magmatic vapor to gold-rich epithermal liquid: the porphyry to epithermal transition at Navados de Famatina, northwest Argentina, Econ. Geol., 2009, vol. 104, pp. 449–477.

    Article  Google Scholar 

  • Ren, Z-Y., Ingle, S., Takahashi, E., et al., The chemical structure of the Hawaiian mantle plume, Nature, 2005, vol. 436, pp. 837–840.

    Article  Google Scholar 

  • Richard, A., Rozsypal, C., Mercadier, J., et al., Giant uranium deposits formed from exceptionally uranium-rich acidic brines, Nature Geosci., 2012, vol. 5, pp. 142–146.

    Article  Google Scholar 

  • Richards, J.P., Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation, Econ. Geol., 2003, vol. 98, pp. 1515–1533.

    Article  Google Scholar 

  • Rickers, K., Thomas, R., and Heinrich, W., The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: a SXRF study of melt and fluid inclusions, Mineral. Deposita, 2006, vol. 41, pp. 229–245.

    Article  Google Scholar 

  • Robertson, K., Simon, A., Pettke, T., et al., Melt inclusion evidence for magma evolution at Mutnovsky Volcano, Geofluids, 2013, vol. 13, pp. 421–439.

    Article  Google Scholar 

  • Rosenbaum, J.M., Zindler, A., and Rubenstone, J.L., Mantle fluids: evidence from fluid inclusions, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3229–3252.

    Article  Google Scholar 

  • Rowe, M.C., Kent, A.J.R., and Nielsen, R.L., Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the Cascade Volcanic Arc, J. Petrol., 2009, vol. 50, pp. 61–91.

    Article  Google Scholar 

  • Ruscitto, D.M., Wallace, P.J., Johnson, E.R., et al., Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: implications for magma formation and mantle conditions in a hot arc, Earth Planet. Sci. Lett., 2010, vol. 298, pp. 153–161.

    Article  Google Scholar 

  • Rusk, B.G., Reed, M.H., Dilles, J.H., et al., Compositions of magmatic hydrothermal fluids determined by LA-ICPMS of fluid inclusions from the porphyry Copper–Molybdenum deposit at Butte, MT,Chem. Geol., 2004, vol. 210, pp. 173–199.

    Article  Google Scholar 

  • Sadofsky, S.J., Portnyagin, M., Hoernle, K., and Bogaard, P., Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions, Contrib. Mineral. Petrol., 2008, vol. 155, pp. 433–456.

    Article  Google Scholar 

  • Safonov, Yu.G., Popov, V.V., Volkov, A.V., and Gongal’skii, B.I., Geodynamic and geotectonic settings of the formation of large gold concentrations, in Krupnye i superkrupnye mestorozhdeniya rudnykh poleznykh iskopaemykh (Large and Superlarge Ore Deposits), Moscow: IGEM RAN, 2006, vol. 2, pp. 97–142.

    Google Scholar 

  • Salisbury, M.J., Patton, J.R., Kent, A.J.R., et al., Deep-sea ash layers reveal evidence for large, Late Pleistocene and Holocene explosive activity from Sumatra, Indonesia, J. Volcanol. Geotherm. Res., 2012, vol. 231-232, pp. 61–71.

    Article  Google Scholar 

  • Saunders, K.E., Baker, J.A., and Wysoczanski, R.J., Microanalysis of large silicic magma in continental and oceanic arcs: melt inclusions in Taupo volcanic zone and Kermadec arc rocks, South West Pacific, J. Volcanol. Geotherm. Res., 2010, vol. 190, pp. 203–218.

    Article  Google Scholar 

  • Sawkins, F.J., Metal deposits in relation to plate tectonics, Minerals and Rocks, 1990, vol. 17.

  • Seo, J.H., Guillong, M., and Heinrich, C.A., Separation of molybdenum and copper in porphyry deposits: the roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon, Econ. Geol., 2012, vol. 107, pp. 333–356.

    Article  Google Scholar 

  • Silantyev, S.A., Danyushevskii, L.V., Plechova, A.A., et al., “Geochemical and isotopic signatures of magmatic products in the MAR rift valley at 12°49'–17°23' N and 29°59'–33°41' N: evidence of two contrasting sources of the parental melts”, Petrology, 2008, vol. 16, pp. 36–62.

    Article  Google Scholar 

  • Sillitoe, R.H., Relation of metal provinces in western America to subduction of oceanic lithosphere, Geology, 1972, vol. 83, pp. 813–818.

    Google Scholar 

  • Sillitoe, R.H., Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the Circum-Pacific region, Aust. J. Earth Sci., 1997, vol. 44, pp. 373–388.

    Article  Google Scholar 

  • Sillitoe, R. and Hedenquist, J., Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits, SEG Spec. Publ., 2003, vol. 10, pp. 315–343.

    Google Scholar 

  • Silva, R.C.F., Hagemann, S., Lobato, L.M., et al., Hydrothermal fluid processes and evolution of the giant Serra Norte jaspilite-hosted iron ore deposits, Carajas mineral province, Brazil, Econ. Geol., 2013, vol. 108, pp. 739–779.

    Article  Google Scholar 

  • Simonov, V.A., Kovyazin, S.V., Peive, A.A., and Kolmogorov, Yu.P., Geochemical characteristics of magmatic systems in the region of the Sierra Leone Fracture Zone, Central Atlantic: evidence from melt inclusions, Geochem. Int., 2005, vol. 43, no. 7, pp. 682–693.

    Google Scholar 

  • Sirbescu, M.L., Krukowski, E.G., Schmidt, C., et al., Analysis of boron in fluid inclusions by microthermometry, laser ablation ICP-MS, and Raman spectroscopy: application to the Cryo-Genie pegmatite, San Diego County, California, USA, Chem. Geol., 2013, vol. 342, pp. 138–150.

    Article  Google Scholar 

  • Sisson, T.W., Kimura, J.-I., and Coombs, M.L., Basanite–nephelinite suite from early Kilauea: carbonated melts of phlogopite–garnet peridotite at Hawaii’s leading magmatic edge, Contrib. Mineral. Petrol., 2009, vol. 158, pp. 803–829.

    Article  Google Scholar 

  • Slater, L., McKenzie, D., Gronvold, K., and Shimizu, N., Melt generation and movement beneath Theistareykir, NE Iceland, J. Petrol., 2001, vol. 42, pp. C. 321–354.

    Article  Google Scholar 

  • Sobolev, A.V., Hofmann, A.W., Jochum, K.P., et al., A young source for the Hawaiian plume, Nature, 2011, vol. 476, pp. 434–437.

    Article  Google Scholar 

  • Stoffell, B., Wilkinson, J.J., and Jeffries, T.E., Metal transport and deposition in hydrothermal veins revealed by 213 nm UVlaser ablation microanalysis of single fluid inclusions, Am. J. Sci., 2004, vol. 304, pp. 533–557.

    Article  Google Scholar 

  • Stoffell, B., Appold, M.S., Wilkinson, J.J., et al., Geochemistry and evolution of Mississippi valley-type mineralizing brines from the Tri-State and Northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions, Econ. Geol., 2008, vol. 103, pp. 1411–1433.

    Article  Google Scholar 

  • Student, J.J. and Bodnar, R.J., Silicate melt inclusions in porphyry copper deposits: identification and homogenization behavior, Can. Mineral., 2004, vol. 41, pp. 1583–1599.

    Article  Google Scholar 

  • Su, W., Heinrich, C.A., Pettke, T., et al., Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids, Econ. Geol., 2009, vol. 104, pp. 73–93.

    Article  Google Scholar 

  • Sun, W., Bennett, V.C., Eggins, S.M., et al., Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results, Chem. Geol., 2003, vol. 196, pp. 259–281.

    Article  Google Scholar 

  • Sun, W., Bennett, V.C., and Kamenetsky, V.S., The mechanism of re enrichment in arc magmas: evidence from Lau Basin glasses and primitive melt inclusions, Earth Planet. Sci. Lett., 2004, vol. 222, pp. 101–114.

    Article  Google Scholar 

  • Sun, W.D., Binns, R.A., Fan, A.C., et al., Chlorine in submarine volcanic glasses from the Eastern Manus Basin, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 1542–1552.

    Article  Google Scholar 

  • Sun, W., Hu, Y., Kamenetsky, V.S., et al., Constancy of Nb/U in the mantle revisited, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 3542–3549.

    Article  Google Scholar 

  • Sushchevskaya, N.M., Bonatti, E., Peive, A.A., et al., Heterogeneity of rift magmatism in the equatorial province of the Mid-Atlantic Ridge (15° N to 3° S), Geochem. Int., 2002, vol. 40, no. 1, pp. 26–50.

    Google Scholar 

  • Sushchevskaya, N.M., Kamenetsky, V.S., Murav’ev, K.G., et al., Tholeiitic magmas within the Mid-Atlantic Ridge segments at 25°–30° N: composition, generation conditions, and relation to modern ore formation, Geochem. Int., 2000, vol. 38, no. Suppl. 1, S3–S19.

    Google Scholar 

  • Thebaud, N., Philippot, P., Rey, P., and Cauzid, J., Composition and origin of fluids associated with lode gold deposits in a Mesoarchean greenstone belt (Warrawoona syncline, Pilbara Craton, Western Australia) using synchrotron radiation X-ray fluorescence, Contrib. Mineral. Petrol., 2006, vol. 152, pp. 485–503.

    Article  Google Scholar 

  • Timm, C., de Ronde, C.E.J., Leybourne, M.I., et al., Sources of chalcophile and siderophile elements in Kermadec arc lavas, Econ. Geol., 2012, vol. 107, pp. 1527–1538.

    Article  Google Scholar 

  • Tomkins, A.G. and Mavrogenes, J.A., Generation of metal-rich felsic magmas during crustal anatexis, Geology, 2003, vol. 31, pp. 765–768.

    Article  Google Scholar 

  • Tomkins, A.G., Weinberg, R.F., and McFarlane, C.R.M., Preferential magma extraction from K- and metal-enriched source regions in the crust, Mineral. Deposita, 2009, vol. 44, pp. 171–181.

    Article  Google Scholar 

  • Ulrich, T., Gunther, D., and Heinrich, C., The evolution of porphyry Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de La Alumbrera, Argentina, Econ. Geol., 2001, vol. 96, pp. 1743–1774.

    Article  Google Scholar 

  • Vanko, D.A., Bonnin-Mosbah, M., Philippot, P., et al., Fluid inclusions in quartz from oceanic hydrothermal specimens and the Bingham, Utah porphyry-Cu deposit: a study with PIXE and SXRF, Chem. Geol., 2001, vol. 173, pp. 227–238.

    Article  Google Scholar 

  • Vlastelic, I., Menard, G., Gannoun, A., et al., Magma degassing during the April 2007 collapse of Piton de La Fournaise: the record of semi-volatile trace elements (Li, B, Cu, In, Sn, Cd, Re, Tl, Bi), J. Volcanol. Geotherm. Res., 2013, vol. 254, pp. 94–107.

    Article  Google Scholar 

  • Volkov, A.V., Sidorov, A.A., and Starostin, V.I., Metallogeniya vulkanogennykh poyasov i zon aktivizatsii (Metallogeny of Volcanogenic Belts and Actovation Zones), Moscow: MAKS Press, 2014.

    Google Scholar 

  • Wallace, P.J., Anderson, A.T., and Davis, A.M., Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma system: interpreting the record preserved in melt inclusions from the Bishop tuff, J. Geophys. Res., 1999, vol. 104, no. B9, pp. 20097–20122.

    Article  Google Scholar 

  • Wallier, S., Rey, R., Kouzmanov, K., et al., Magmatic fluids in the breccia-hosted epithermal Au–Ag deposit of Rosia Montana, Romania, Econ. Geol., 2006, vol. 101, pp. 923–954.

    Article  Google Scholar 

  • Waters, C.L., Sims, K.W.W., Perfit, M.R., et al., Perspective on the genesis of E-MORB from chemical and isotopic heterogeneity at 9°–10° N East Pacific Rise, J. Petrol., 2011, vol. 52, pp. 565–602.

    Article  Google Scholar 

  • Webster, J.D. and Duffield, W.A., Extreme halogen abundances in tin-rich magma of the Taylor Creek rhyolite, New Mexico, Econ. Geol., 1994, vol. 89, pp. 840–850.

    Article  Google Scholar 

  • Webster, J.D., Burt, D.M., and Aguillon, R.A., Volatile and lithophile trace-element geochemistry of Mexican tin rhyolite magmas deduced from melt inclusions, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3267–3283.

    Article  Google Scholar 

  • Wehrmann, H., Hoernle, K., Portnyagin, M., et al., Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras, Geochem. Geophys. Geosyst., 2011, vol. 12, no. 6, pp. 1–16.

    Article  Google Scholar 

  • Wilkinson, J.J., Stoffell, B., Wilkinson, C.C., et al., Anomalously metal-rich fluids form hydrothermal ore deposits, Science, 2009, vol. 323, pp. 764–767.

    Article  Google Scholar 

  • Workman, R.K., Hart, S.R., Jackson, M., et al., Recycled metasomatized lithosphere as the origin of the enriched mantle II(EM2) end-member: evidence from the Samoan volcanic chain, Geochem. Geophys. Geosyst., 2004, vol. 5, no. 4, pp. 1–44.

    Article  Google Scholar 

  • Zajacz, Z. and Halter, W., LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: quantification, data analysis and mineral/melt partitioning, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 1021–1040.

    Article  Google Scholar 

  • Zaw, K., Hunns, S.R., Large, R.R., et al., Microthermometry and chemical composition of fluid inclusions from the Mt Chalmers volcanic-hosted massive sulfide deposits, Central Queensland, Australia: implications for ore genesis, Chem. Geol., 2003, vol. 194, pp. 225–244.

    Article  Google Scholar 

  • Zedgenizov, D.A., Rege, S., Griffin, W.L., et al., Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICP-MS analysis, Chem. Geol., 2007, vol. 240, pp. 151–162.

    Article  Google Scholar 

  • Zhao, Z., Xiong, X., Wang, Q., et al., Alkali-rich igneous rocks and related Au and Cu large and superlarge deposits in China, Science in China. Ser. D, 2003, vol. 46, pp. 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Girnis.

Additional information

Original Russian Text © V.B. Naumov, A.V. Girnis, V.A. Dorofeeva, V.A. Kovalenker, 2016, published in Geologiya Rudnykh Mestorozhdenii, 2016, Vol. 58, No. 4, pp. 367–384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, V.B., Girnis, A.V., Dorofeeva, V.A. et al. Concentration of ore elements in magmatic melts and natural fluids as deduced from data on inclusions in minerals. Geol. Ore Deposits 58, 327–343 (2016). https://doi.org/10.1134/S1075701516040048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701516040048

Navigation