Skip to main content
Log in

Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: I. Thermodynamic constants at ambient conditions

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Understanding and deciphering processes proceeding near the surface are among the urgent tasks of contemporary mineralogy and geochemistry, which are especially important for resolving ecological challenges and developing principles of rational environmental management. The paper presents systematized data published on thermodynamics of minerals (arsenates, sulfates, selenites, and selenates), which are formed in the weathering zone of sulfide ores, and determines approaches to quantitative physicochemical modeling of their formation conditions. Diagrams of phase and chemical equilibria (Eh-pH, diagrams of solubility) of the subsystems of the model system Fe-Cu-Zn-Pb-Co-Ni-As-Se-S-H2O (Fe2+, Fe3+, Cu2+, Zn2+, Pb2+, Ni2+, Co2+, H+//SeO 2−3 , SeO 2−4 , AsO 3−4 , SO 2−4 , OH-H2O) are used as a thermodynamic basis for modeling mineral-forming processes in the weathering zone of ore deposits. Seventy-two arsenates, about 70 sulfates, and 7 selenites and selenates have been identified in the framework of this system. The available published values of standard thermodynamic functions of the formation of minerals and chemical compounds are given, as well as the Pitzer equation parameters to describe the sulfate systems, which are substantially specific due to the high solubility of their components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baes, C.F., Reardon, E.J., and Moyer, B.A., Ion Interaction Model Applied to Equilibria in the CuSO4-H2SO4-H2O System, J. Phys. Chem., 1993, vol. 97, pp. 12343–12348.

    Article  Google Scholar 

  • Charykova, M.V., Krivovichev, V.G., and Depmeier, W., Selenites and Sulfates: the System Ni2+, Co2+ // SeO 2−2 , SO 2−4 -H2O—Thermodynamic Analysis and Geological Applications, Zap. Ross. Mineral-O-va, 2007, Spec. Issue, Crystallogenesis and Mineralogy, no. 7, pp. 246–266.

  • Charykova, M.V., Krivovichev, V.G., and Depmeier, W., Thermodynamics of Arsenates, Selenites, and Sulfates in Oxidation zones of Sulfide Ores. II. The Systems M1, M2 // SO 2−4 -H2O (M1, M2 = Fe2+, Fe3+, Cu2+, Zn2+, Pb2+, Ni2+, Co2+, H+) at 25°C, Zap. Ross. Mineral-O-va, 2010, vol. 138, no. 1, pp. 3–18 [Geol. Ore Deposits (Engl. Transl.), 2010, Vol. 52 (Spec. Issue 8, Zapiski Russian Mineral. Soc.), pp. 771–780.

    Google Scholar 

  • Christov, C., Pitzer Ion-Interaction Parameters for Fe(II) and Fe(III) in the Quinary {Na + K + Mg + Cl + SO4 + H2O} System at 298.15 K, J. Chem. Thermodyn., 2004, vol. 36, pp. 223–235.

    Article  Google Scholar 

  • Chukhlantsev, V.G., Splubility Product of Arsenate Series, Zhurn. Analit. Khimii, 1956, vol. 11, pp. 529–535.

    Google Scholar 

  • Chukhlantsev, V.G. and Tomashevsky, G.P., Solubility of Selenites of Some Metals, Zh. Anal. Khim., 1957, vol. 12, pp. 296–301.

    Google Scholar 

  • Davis, A., Ruby, M.V., Bloom, M., Schoof, R., et al., Mineralogic Constraints on the Bioavailability of Arsenic in Smelter-Impacted Soils, Environ. Sci. Technol., 1996, vol. 30, pp. 392–399.

    Article  Google Scholar 

  • Downes, C.J. and Pitzer, R.S., Thermodynamics of Electrolytes. Binary Mixtures Formed from Aqueous NaCl, Na2SO4, CuCl2, and CuSO4 at 25°C, J. Solution Chem., 1976, vol. 5, pp. 389–398.

    Article  Google Scholar 

  • Drouet, C. and Navrotsky, A., Synthesis, Characterization, and Thermochemistry of K-Na-H3O Jarosites, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 2063–2076.

    Article  Google Scholar 

  • Essington, M.E., Estimation of the Standard Free Energy of Formation of Metal Arsenates, Selenates and Selenites, Soil Sci. Soc. Am. J., 1988, vol. 52, pp. 1574–1579.

    Article  Google Scholar 

  • Filippov, V.K. and Yakovleva, S.I., Application of Pitzer Method to Calculation of Thermodynamic Functions of the System Me2SO4-CuSO4-H2O (Me = Li, Na, K, Rb, Cs), in Khimiya i termodinamika rastvorov (Chemistry and Thermodynamic of Solutions), Leningrad: Leningrad State Univ., 1982, issue 5, pp. 3–31.

    Google Scholar 

  • Guerra, E. and Bestetti, M., Physicochemical Properties of ZnSO4-H2SO4-H2O Electrolytes of Relevance to Zinc Electrowinning, J. Chem. Eng. Data, 2006, vol. 51, pp. 1491–1497.

    Article  Google Scholar 

  • Hemingway, B.S., Seal, R.R.., and Chou, I.-M., Thermodynamic Data for Modeling Acid Mine Drainage Problems: Compilation and Estimation of Data for Selected Soluble Iron-Sulfate Minerals, USGS Open-File Report, 2002, no. 02-161.

  • Khodakovsky, I.L., Osadchii, E.G., Devina, O.A., Sergeeva, E.I., Shikina, N.D., Ogorodova, L.P., Polotnyanko, N.A., Echmaeva, E.A., Koroleva, O.N., Kristavchuk, A.V., and Viktorov, V.N., Coordination and Form of Presentation of Experimental Thermodynamic Information in the Joint Database, Elektronnyi Nauchno-Informatsionnyi Zhurnal Vestnik Otdeleniya Nauk o Zemle RAN, 2008, no. 1 (26).

  • Kogan, V.B., Ogorodnikov, S.K., and Kafarov, V.V., Spravochnik po rastvorimosti. Troinye i mnogokomponentnye sistemy, obrazovannye neorganicheskimi veshchestvami (Handbook on Solubility. Ternary and Multicomponent Systems Formed by Inorganic Compounds), Leningrad: Nauka, 1970.

    Google Scholar 

  • Krivovichev, V.G., Mineralogicheskii slovar (Mineralogical Glossary), St. Petersburg: St. Petersburg State Univ., 2009.

    Google Scholar 

  • Krivovichev, V.G. and Charykova, M.V., Termodinamika mineral’nykh ravnovesii v sistemakh s toksichnymi komponentami. 1. Selen (Thermodynamic of Mineral Equilibria in Systems with Toxic Components. 1. Selenium), St. Petersburg: SOLO, 2006.

    Google Scholar 

  • Krivovichev, V.G., Charykova, M.V., and Depmeier, W., Termodinamika mineral’nykh ravnovesii v sistemakh s toksichnymi komponentami. 2. Mysh’yak (Thermodynamic of Mineral Equilibria in Systems with Toxic Components. 2. Arsenic), St. Petersburg: SOLO, 2007.

    Google Scholar 

  • Krivovichev, V.G. and Depmeier, W., Selenites and Selenates: Systems Se-S-H2O, Pb-Se-S-H2O, U-Se-HO and U-Se-I-H2O—Thermodynamic Analysis and Geological Applications, Zap. Ross. Mineral. O-va, 2005, vol. 134, no. 4, pp. 1–14.

    Google Scholar 

  • Kumok, V.N., Kuleshova, O.M., and Karabin, L.A., Proizvedeniya rastvorimosti (Solubility Products), Novosibirsk: Nauka, 1983.

    Google Scholar 

  • Langmuir, D., Mahoney, J., and Rowson, J., Solubility Products of Amorphous Ferric Arsenate and Crystalline Scorodite (FeAsO4 · 2H2O) and Their Application to Arsenic Behavior in Buried Mine Tailings, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 2942–2956.

    Article  Google Scholar 

  • Magalhaes, M.K.F., Pedrosa De Jesus, J.D., and Williams P.A. The Chemistry of Formation of Some Secondary Arsenate Minerals of Cu(II), Zn(II) and Pb(II), Mineral. Mag., 1988, vol. 52, pp. 679–690.

    Article  Google Scholar 

  • Majzlan, J., Navrotsky, A., McCleskey, R.B., and Alpers, C.N., Thermodynamic Properties and Crystal Structure Refinement of Ferricopiapite, Coquimbite, Rhomboclase and Fe2(SO4)3(H2O)5, Eur. J. Mineral., 2006, vol. 18, pp. 175–186.

    Article  Google Scholar 

  • Makhmetov, M.Zh. and Gorokhova, L.G., Termicheskaya ustoichivost’ i rastvorimost’ arsenatov (Thermal Stability and Solubility of Arsenates), Alma-Ata: Nauka, 1988.

    Google Scholar 

  • Marion, G.M., Kargel, J.S., and Catling, D.C., Modeling Ferrous-Ferric Iron Chemistry with Application To Martian Surface Geochemistry, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 242–266.

    Article  Google Scholar 

  • Miller, D.G., Rard, J.A., Eppstein, L.B., and Robinson, R.A., Mutual Diffusion Coefficients, Electrical Conductances, Osmotic Coefficients, and Ionic Transport Coefficients I ij for Aqueous CuSO4 at 25°C, J. Solution Chem., 1980, vol. 9, pp. 467–496.

    Google Scholar 

  • Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., Spravochnik termodinamicheskikh velichin (Thermodynamic Data Handbook), Moscow: Atomizdat, 1971.

    Google Scholar 

  • Olin, A., Nolang, B., Osadchii, E.G., Ohman, L.-O., and Rosen, E., Chemical Thermodynamics of Selenium, Amsterdam: Elsevier, 2005.

    Google Scholar 

  • Paige, C.R., Kornicker, W.A., Hileman, O.E., and Snodgrass, W.J., Modeling Solution Equilibria for Uranium Ore Processing: the PbSO4-H2SO4-H2O and PbSO4Na2SO4-H2O Systems, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 1165–1173.

    Article  Google Scholar 

  • Pitzer, K.S., Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations, J. Phys. Chem., 1973a, vol. 77, pp. 268–277.

    Article  Google Scholar 

  • Pitzer, K.S. and Mayorga, G., Thermodynamics of Electrolytes. II. Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent, J. Phys. Chem., 1973b, vol. 77, pp. 2300–2308.

    Article  Google Scholar 

  • Pitzer, K.S. and Mayorga, G., Thermodynamics of Electrolytes. III. Activity and Osmotic Coefficients for 2-2 Electrolytes, J. Solution Chem., 1974, vol. 3, pp. 539–546.

    Article  Google Scholar 

  • Pitzer, K.S., Roy, R.N., and Silvester, L.E., Thermodynamics of Electrolytes. 7. Sulfuric Acid, J. Am. Chem. Soc., 1977, vol. 99, pp. 4930–4936.

    Article  Google Scholar 

  • Reardon, E.J., Ion Interaction Model Applied to Equilibria in the NiSO4-H2SO4-H2O System, J. Phys. Chem., 1989, vol. 93, pp. 4630–4636.

    Article  Google Scholar 

  • Reardon, E.J. and Beckie, R.D., Modeling Chemical Equilibria of Acid Mine-Drainage: The FeSO4-H2SO4-H2O System, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 2355–2368.

    Article  Google Scholar 

  • Rumyantsev, A.V., Hagemann, S., and Moog, H.C., Isopiestic Investigation of the Systems Fe2(SO4)3-H2SO4-H2O, FeCl3-H2O, and Fe(III)-(Na,K,Mg,Ca)Cln-H2O at 298.15 K, J. Phys. Chem., 2004, vol. 218, pp. 1089–1127.

    Google Scholar 

  • Seby, F., Potin-Gautier, M., Giffaut, E., et al., A Critical Review of Thermodynamics Data for Selenium Species at 25°C, Chem. Geol., 2001, vol. 171, pp. 173–194.

    Article  Google Scholar 

  • Termicheskie konstanty veshchestv, T. 1-10 (Thermal Constants of Substances), Glushko, V.P., Ed., Moscow: VINITI, 1965–1982.

    Google Scholar 

  • Toska, N.J., Smirnov, A., and McLennan, S.M., Application of the Pitzer Ion Interaction Model To Isopiestic Data for the Fe2(SO4)3-H2SO4-H2O System at 298.15 and 323.15 K, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 2680–2698.

    Article  Google Scholar 

  • Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., and Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units, J. Phys. Chem. Ref. Data, 1982, vol. 11,suppl. 2.

  • Yakhontova, L.K. and Zvereva, V.P., Osnovy mineralogii gipergeneza (Principles of Supergene Mineralogy), Vladivostok: Dal’nauka, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Charykova.

Additional information

Original Russian Text © M.V. Charykova, V.G. Krivovichev, W. Depmeir, 2009, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2009, No. 6, pp. 105–117.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charykova, M.V., Krivovichev, V.G. & Depmeir, W. Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: I. Thermodynamic constants at ambient conditions. Geol. Ore Deposits 52, 689–700 (2010). https://doi.org/10.1134/S1075701510080015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701510080015

Keywords

Navigation