Skip to main content
Log in

Calcioolivine, γ-Ca2SiO4, an old and New Mineral species

  • New Minerals
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Calcioolivine has been included into the MDI mineral database in the list of grandfathered minerals. Its history, together with related artificial compounds, is extremely complex: various minerals and compounds received this name, including natural orthorhombic Ca orthosilicate. In this paper, the crystal structure and properties of natural calcioolivine are described for the first time. The new mineral has been found at Mt. Lakargi, Upper Chegem Plateau, the northern Caucasus, Kabarda-Balkaria Republic, Russia. It has been identified in skarnified, primary carbonate xenoliths entrained by middle to late Pliocene silicic ignimbrites of the Upper Chegem caldera. These xenoliths of a few centimeters to a few meters in size are located close to the volcanic vent. Calcioolivine rims relics of larnite and occurs as relict grains among crystals of spurrite, rondorfite, wadalite or secondary hillebrandite, afwillite, thaumasite, and ettringite. Hillebrandite is the major product of alteration of calcioolivine; larnite is relatively more resistant to low-temperature alteration. Spurrite, larnite, tilleyite, kilchoanite, cuspidine, wadalite, rondorfite, reinhardbraunsite, lakargiite (CaZrO3), members of ellestadite series, afwillite, ettringite, katoite, and thaumasite are associated minerals. It is inferred that calcioolivine has been produced as a result of interaction of host carbonate rocks in xenoliths with volcanic lava and gases during eruption. The name calcioolivine was approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, September 6, 2007 (no. 07-B).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Refrences

  1. A. M. Borsuk, Mesozoic and Cenozoic Igneous Associations of the Greater Caucasus (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  2. N. L. Bowen, Am. J. Sci. Ser. 5, 3, 30 (1922).

    Google Scholar 

  3. T. E. Bridge, “Bredigite, Larnite and γ-Dicalcium Silicates from Marble Canyon,” Am. Miner. 51, 1768–1774 (1966).

    Google Scholar 

  4. B. V. Chesnokov, L. F. Bazhenova, A. F. Bushmakin, V. A Vilisov, Yu. L. Kretser, and T. P. Nishanbaev, “New Minerals from Burnt Waste Dumps of the Chelyabinsk Coal Basin (4th Communication),” in Ural Mineral Collection (UIF Nauka, Yekaterinburg, 1993), pp. 3–25 [in Russian].

    Google Scholar 

  5. A. M. Clark, Hey’s Mineral Index (Chapman & Hall, London, 1993).

    Google Scholar 

  6. Y.-S. Dai and J. E. Post, “Crystal Structure of Hillebrandite: A Natural Analog of Calcium Silicate Hydrate (CSH) Phases in Portland Cement,” Am. Miner. 80, 841–844 (1995).

    Google Scholar 

  7. A. l. Day, E. S. Shepherd, and F. E. Wright, “Lime Silica Series of Minerals,” Am. J. Sci. 22, 265–302 (1995).

    Google Scholar 

  8. W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals (Longmans, London, 1962), Vol. 1.

    Google Scholar 

  9. V. M. Gazeev, A. E. Zadov, A. E. Gurbanov, N. N. Pertsev, A. V. Mokhov, and A. Ya. Dokuchaev, “Rare Minerals From the Upper Chegem Caldera (in Xenolites of Skarnified Limestone from Ignimbrites),” in Bull. Vladikavkaz. Sci. Centre (Gassiev IPP, Vladikavkaz, 2006), Vol. 6, No. 1, pp. 18–27.

    Google Scholar 

  10. E. N. Gramenitsky, A. R. Kotel’nikov, A. M. Batanova, T. I. Shchekina, and P. Yu. Plechev, Experimental and Technical Petrology (Nauchnyi Mir, Moscow, 2000) [in Russian].

    Google Scholar 

  11. G. Hentschel, Die Mineralien der Eifelvulkane, Zweite Auflage (Weise Verlag, Muenchen, 1987), pp. 22–29.

    Google Scholar 

  12. Handbuch der Mineralogie, Erganzungsbd, Ed. by G. Linck (Berlin, 1938).

  13. P. W. Lipman, O. A. Bogatikov, A. A. Tsvetkov, C. Gazis, A. G. Gurbanov, K. Hon, N. V. Koronovsky, et al., “2.8 Ma Ash-Flow Caldera at Chegem River in the Northern Caucasus Mountain (Russia), Cotemporaneous Granites and Associated Ore Deposits,” J. Volcanol. Geotherm. Res., 57, 85–124 (1993).

    Article  Google Scholar 

  14. E. E. Milanovsky and N. V. Koronovsky, Orogenic Volcanism and Tectonics of the Alpine Belt of Eurasia (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  15. T. Mihajlović, C. L. Lengauer, T. Ntaflos, et al., “Two New Minerals, Rondorfite, Ca8Mg[SiO4]4Cl2, and Al-Marudite, K(Na)2(Mn,Fe,Mg)2(Be,Al)3[Si12O30], and a Study of Iron-Rich Wadalite, Ca12[Al8Si4Fe2)O32]Cl6, from the Belleberger (Bellberg) Volcano, Eifel, Germany,” N. Jb. Miner. Abh. 179(3), 265–269 (2004).

    Article  Google Scholar 

  16. W. G. Mumme, R. J. Hill, G. W. Bushnell, and E. R. Segnit, “Rietveld Crystal Structure Refinements, Crystal Chemistry and Calculated Powder Diffraction Data for the Polymorphs of Dicalcium Silicate and Related Phase,” N. Jb. Miner. Abh. 169(1), 35–68 (1995).

    Google Scholar 

  17. H. O’Daniel, L. Tscheischwili, and S. von Zur, “Structure γ-Ca2SiO4 and Na2BeF4,” Zeitschrift Kristallogr. 104, 124–141 (1942).

    Google Scholar 

  18. K. Oëbbeke, Ein Beitrag zur Kenntniss des Palaeopikrits und seiner Umwandlungsprodukte. Inaugural Dissertation, Wurzburg (Neues Jahrb. Miner., 1877).

  19. F. P. Paul, Tschermaks Mineralogische und Petrographische Mitteilungen (1906), Vol. 25.

  20. H. Strunz, Mineralogichen Tabellen (Leipzig, 1959).

  21. H. Strunz and E. Nickel, Strunz Mineralogical Tables: Chemical-Structural Mineral Classification System, 9th Ed. (2001).

  22. H. F. W. Taylor, Cement Chemistry (Academic Press, London, 1990; Mir, Moscow, 1996) [in Russian].

    Google Scholar 

  23. C. E. Tilley, “An Unnamed Mineral of the Olivine Group,” Geol. Mag. 64, 143–144 (1927).

    Article  Google Scholar 

  24. C. E. Tilley, “A Monticellite-Nepheline Basalt from Tasmania: A Correction to Structure Data,” Geol. Mag. 65, 29–30 (1928).

    Article  Google Scholar 

  25. C. E. Tilley, “On Larnite (Calcium Orthosilicate, a New Mineral) and Associated Minerals from the Limestone-Contact Zone of Scowt Hill, Co. Antrum,” Miner. Mag. 22(125), 76–86 (1929).

    Article  Google Scholar 

  26. C. E. Tilley and H. C. G. Vincent, “The Occurrence of an Orthorhombic High-Temperature Form of Ca2SiO4 Bredigite in the Scowt Hill Contact-Zone and As a Constituent of Slags,” Miner. Mag., No. 200, 255–271 (1948).

  27. A. N. Winchell and H. Winchell, Elements of Optical Mineralogy and Introduction to Microscopic Petrography (New York, 1951).

  28. A. N. Winchell and H. Winchell, The Microscopically Characters of Artificial Inorganic Solid Substances: Optical Properties of Artificial Minerals (Acad. Press, New York, 1964).

    Google Scholar 

  29. N. H. Winchell and A. N. Winchell, Elements of Optical Mineralogy: An Introduction to Microscopic Petrography: Part II. Descriptions of Minerals (New York, 1927).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Zadov.

Additional information

Original Russian Text © A.E. Zadov, V.M. Gazeev, N.N. Pertsev, E.R. Gobechiya, N.A. Yamnova, N.V. Chukanov, 2009, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2009, Pt. CXXXVII, No. 6, pp. 46–57.

Considered by the Commission on New Minerals and Mineral Names, Russian Mineralogical Society, January 17, 2007. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, September 6, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadov, A.E., Gazeev, V.M., Pertsev, N.N. et al. Calcioolivine, γ-Ca2SiO4, an old and New Mineral species. Geol. Ore Deposits 51, 741–749 (2009). https://doi.org/10.1134/S1075701509080066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701509080066

Keywords

Navigation