Skip to main content
Log in

Novel Сarbon Dots for Corrosion Inhibition of N80 Carbon Steel in 3% Saturated CO2 Saline Solution

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this work, the high biocompatibility and low cytotoxicity of functionalized carbon dots (N-CDs) was synthesized by microwave method. The corrosion inhibition behavior of N-CDs for N80 steel in 3% saturated CO2 saline solution was systematically investigated by weight loss, electrochemical measurements, corrosion morphology and microscopic morphology and element analysis. Results revealed the suppression performance was improved significantly after adding N-CDs and the inhibition efficiency reached up to 83.5% at 600 mg/L of N-CDs. The electrochemical results demonstrated that as-prepared N-CDs was a mixed corrosion inhibitor dominated by the control anode. In addition, SEM results manifested that the addition of corrosion inhibitor N-CDs slowed down the corrosion of N80 carbon steel surface, which was attributed to the formation of adsorption film of corrosion inhibitor molecules on carbon steel. The purpose of this work is to explore the inhibitory effect of the environmentally friendly and efficient corrosion inhibitor nanomaterials used in the protection of N80 carbon steel metal in saline solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Hua, Y., Mohammed, S., Barker, R., and Neville, A. J. Materials Science & Technology, 2020, vol. 41, pp. 21–32. https://doi.org/10.1016/j.jmst.2019.08.050

    Article  Google Scholar 

  2. Elgaddafi, R., Ahmed, R., and Shah, S., Journal of Petroleum Science and Engineering, 2021, vol. 196, ID 107638. https://doi.org/10.1016/j.petrol.2020.107638

    Article  CAS  Google Scholar 

  3. Elgaddafi, R., Ahmed, R., and Osisanya, S., J. Petroleum Science and Engineering, 2021, vol. 196, ID 107816 https://doi.org/10.1016/j.petrol.2020.107816

    Article  CAS  Google Scholar 

  4. Chaubey, N., Savita, Qurashi, A., Chauhan, D.S., et al., J. Molecular Liquids, 2020, ID 114385, https://doi.org/10.1016/j.molliq.2020.114385

    Article  CAS  Google Scholar 

  5. Sarkar, T.K., Saraswat, V., Mitra, R.K., et al., Materials Today Communications, 2020, ID 101862. https://doi.org/10.1016/j.mtcomm.2020.101862

    Article  CAS  Google Scholar 

  6. Sowmyashree, A.S., Somya, A., Kumar, C.B.P., et al., Surfaces and Interfaces, 2021, vol. 22, ID 100812. https://doi.org/10.1016/j.surfin.2020.100812

    Article  CAS  Google Scholar 

  7. Shamsa, A., Barker, R., Hua, Y., et al., Corrosion Science, 2020, vol. 176, ID 108916. https://doi.org/10.1016/j.corsci.2020.108916

    Article  CAS  Google Scholar 

  8. Ye, Y., Zhang, D., Zou, Y., et al., J. Cleaner Production, 2020, vol. 264, ID 121682. https://doi.org/10.1016/j.jclepro.2020.121682

    Article  CAS  Google Scholar 

  9. Ye, Y., Yang, D., and Chen, H., J. Materials Science & Technology, 2019, vol. 35, no. 10, pp. 2243–2253. https://doi.org/10.1016/j.jmst.2019.05.045

    Article  Google Scholar 

  10. Ye, Y., Yang, D., Chen, H., et al., J. Hazardous Materials, 2020, vol. 381, ID 121019. https://doi.org/10.1016/j.jhazmat.2019.121019

    Article  CAS  Google Scholar 

  11. Cui, M., Ren, S., Xue, Q., et al., J. Alloys and Compounds, 2017, vol. 726, pp. 680–692. https://doi.org/10.1016/j.jallcom.2017.08.027

    Article  CAS  Google Scholar 

  12. Ye, Y., Jiang, Z., Zou, Y., et al., Materials Science & Technology, 2020, vol. 43, pp. 144–153. https://doi.org/10.1016/j.jmst.2020.01.025

    Article  Google Scholar 

  13. Yang, D., Ye, Y., Su, Y., et al., J.Cleaner Production, 2019, vol. 229, pp. 180–192. https://doi.org/10.1016/j.jclepro.2019.05.030

    Article  CAS  Google Scholar 

  14. Lv, J., Russian Journal of Applied Chemistry, 2020, vol. 93, no. 3, pp. 380–392.

    Google Scholar 

  15. Fakhry, H., El Faydy, M., Benhiba, F., et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, ID 125746. https://doi.org/10.1016/j.colsurfa.2020.125746

    Article  CAS  Google Scholar 

  16. Cen, H., Chen, Z., and Guo, X., J. the Taiwan Institute of Chemical Engineers, 2019, vol. 99, pp. 224–238. https://doi.org/10.1016/j.jtice.2019.02.036

    Article  CAS  Google Scholar 

  17. Cui, M., Ren, S., and Zhao, H., Applied Surface Science, 2018, vol. 443, pp. 145–56. https://doi.org/10.1016/j.apsusc.2018.02.255

    Article  CAS  Google Scholar 

  18. Ye, Y., Chen, H., Zou, Y., and Zhao, H., J. Materials Science & Technology, 2021, vol. 67, pp. 226–236. https://doi.org/10.1016/j.jmst.2020.06.023

    Article  Google Scholar 

  19. Kaskah, S.E., Pfeiffer, M., Klock, H., et al., Surfaces and Interfaces, 2017, vol. 9, pp. 70–78. https://doi.org/10.1016/j.surfin.2017.08.002

    Article  CAS  Google Scholar 

  20. Ren, X., Xu, S., Gu, X., et al., J. Colloid and Interface Science, 2021, vol. 585, pp. 614–626. https://doi.org/10.1016/j.jcis.2020.10.041

    Article  CAS  Google Scholar 

  21. Ramezanzadeh, B., Karimi, B., and Ramezanzadeh, M., J. Taiwan Institute of Chemical Engineers, 2019, vol. 95, pp. 369–382. https://doi.org/10.1016/j.jtice.2018.07.041

    Article  CAS  Google Scholar 

  22. Liu, Z., Ye, Y.W., and Chen, H., J. Cleaner Production, 2020, vol. 270, ID 122458. https://doi.org/10.1016/j.jclepro.2020.122458

    Article  CAS  Google Scholar 

  23. Qiang, Y., Zhang, S., Zhao, H., Corrosion Science, 2019, vol. 161, ID 108193. https://doi.org/10.1016/j.corsci.2019.108193

    Article  CAS  Google Scholar 

  24. Zhao, Q., Guo, J., Cui, G., et al., Colloids and Surfaces B: Biointerfaces, 2020, vol. 194, ID 111150. https://doi.org/10.1016/j.colsurfb.2020.111150

    Article  CAS  PubMed  Google Scholar 

  25. Ye, Y., Zou, Y., Jiang, Z., et al., J. Alloys and Compounds, 2020, vol. 815, ID 152338. https://doi.org/10.1016/j.jallcom.2019.152338

    Article  CAS  Google Scholar 

  26. Cen, H., Zhang, X., Zhao, L., et al., Corrosion Science, 2019, vol. 161, ID 108197. https://doi.org/10.1016/j.corsci.2019.108197

    Article  CAS  Google Scholar 

  27. einali Nikoo, S., Shockravi, A., Mokarami Ghartavol, H., et al., Surfaces and Interfaces, 2020, vol. 21, ID 100751. https://doi.org/10.1016/j.surfin.2020.100751

    Article  CAS  Google Scholar 

  28. Benzbiria, N., Echihi, S., Belghiti, M.E., et al., Colloids and Surfaces B: Biointerfaces, 2020, vol. 194, ID 111150. https://doi.org/10.1016/j.matpr.2020.09.030

    Article  CAS  Google Scholar 

  29. Shamsa, A., Barker, R., and Hua, Y., Materials Today: Proceedings, 2020. https://doi.org/10.1016/j.corsci.2020.108916

  30. Sahini, M.H., Ramezanzadeh, B., and Mohammadloo, H.E., J. Molecular Liquids, 2020, ID 115110. https://doi.org/10.1016/j.molliq.2020.115110

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Southwest Petroleum University, Institute, Chengdu, China for providing the research facilities needed . This work was supported by the National Science and Technology Major Project of China (no. 2016ZX05016004-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Li.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Li, J., Lv, J. et al. Novel Сarbon Dots for Corrosion Inhibition of N80 Carbon Steel in 3% Saturated CO2 Saline Solution. Russ J Appl Chem 94, 1111–1121 (2021). https://doi.org/10.1134/S1070427221080139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221080139

Keywords:

Navigation