Skip to main content
Log in

Development of Technologies for More Efficient Deep Processing of Natural Gas

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Prospects for the development of technologies for natural gas processing to obtain synthetic fuels and chemical and petrochemical products are considered. Comparative analysis of the existing commercial technologies that should be upgraded to enhance the energy efficiency and expand the range of products and of the newly developed innovation technologies allowing direct production of demanded high-value-added products from the gas feedstock is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Braginskii, O.B., Neftegazovyi kompleks mira (Oil-and- Gas Complex of the World), Moscow: Neft’ i Gaz, 2006.

    Google Scholar 

  2. Arutyunov, V.S. and Krylov, O.V., Organicheskaya khimiya: okislitel’nye prevrashcheniya metana (Organic Chemistry: Oxidative Transformations of Methane), Moscow: Yurait, 2017.

    Google Scholar 

  3. Wood, D.A., Nwaoha, C., and Towler, B.F., J. Natural Gas Sci. Eng., 2012, vol. 9, pp. 196–208.

    Article  CAS  Google Scholar 

  4. Annual Energy Outlook 2018 with Projections to 2050, US Energy Information Administration, Febr. 6, 2018. http://www.eia.gov/aeo. Cited Nov. 4, 2018.

  5. Khan, M.S., Karimi, I.A., and Wood, D.A., J. Natural Gas Sci. Eng., 2017, vol. 45, pp. 165–188.

    Article  Google Scholar 

  6. Weger, L., Abanades, A., and Butler, T., Int. J. Hydrogen Energy 2017, vol. 42, no. 1, pp. 720–731.

    Article  CAS  Google Scholar 

  7. Horn, R. and Shlogl, R., Catal. Lett. 2015, vol. 145, pp. 23–39.

    Article  CAS  Google Scholar 

  8. Ghoneim, S.A., El-Salamony, R.A., and El-Temtamy, S.A., World J. Eng. Technol. 2016, vol. 4, pp. 116–139.

    Article  Google Scholar 

  9. Abatzoglou, N., WIREs Energy Environ., 2016, vol. 5, no. 2, pp. 169–187.

    Article  CAS  Google Scholar 

  10. Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Shmelev, V.M., Nikitin, A.V., Fokin, I.G., Eksanov, S.A., Shapovalova, O.V.,and Timofeev, K.A., Russ. J. Appl. Chem. 2016, vol. 89, no. 11, pp. 1816–1824.

    Article  CAS  Google Scholar 

  11. Dorofeenko, S.O. and Polianczyk, E.V., Chem. Eng. J. 2016, vol. 292, pp. 183–189.

    Article  CAS  Google Scholar 

  12. Iulianelli, A., Liguori, S., Wilcox, J., and Basile, A., Catal. Rev. 2016, vol. 58, no. 1, pp. 1–35.

    Article  CAS  Google Scholar 

  13. Davis, B.H. and Occelli, M.L., Fischer–Tropsch Synthesis, Catalysts, and Catalysis: Advances and Applications, CRC, 2016. https://www.crcpress.com/Fischer-Tropsch Synthesis, Catalysts, and Catalysis: Advances and Applications/Davis-Occelli/p/book/9781466555297. Cited Nov. 4, 2018.

    Book  Google Scholar 

  14. Zhang, Q., Deng, W., and Wang, Y., J. Energy Chem., 2013, vol. 22, no. 1, pp. 27–38.

    Article  Google Scholar 

  15. Saeidi, S., Amiri, M.T., Amin, N.A.S., and Rahimpour, M.R., Int. J. Chem. Reactor Eng. 2014, vol. 12, no. 1, pp. 1–26.

    Article  CAS  Google Scholar 

  16. Saeidi, S., Nikoo, M.Kh., Mirvakili, A., Bahrani, S., Amin, N.A.S., and Rahimpour, M.R., Rev. Chem. Eng. 2015, vol. 31, no. 3, pp. 209–238.

    Article  CAS  Google Scholar 

  17. Pour, A.N., Javad, K., Oliaei, T.H., and Mohammadreza, H., Prog. React. Kinet. Mech. 2017, vol. 42, no. 1, pp. 80–88.

    Article  CAS  Google Scholar 

  18. Guillen, D.P., Grimmelt, T., Gandrik, A.M., and Antal, S.P., Progress towards Modeling of Fischer Tropsch Synthesis in a Slurry Bubble Column Reactor, Am. Inst. Chem. Eng., Nov. 2010. https://digital.library. unt.edu/ark:/67531/metadc835098/. Cited Nov. 4, 2018.

    Google Scholar 

  19. Jahangiri, H., Bennet, J., Mahjoubi, P., Wilson, K., and Gu, S., Catal. Sci. Technol. 2014, vol. 4, pp. 2210–2229.

    Article  CAS  Google Scholar 

  20. Mantanga, Ch. and Shekhawat, D., US Department of Energy, National Energy Technology Laboratory (NETL), August 2015. https://www.netl.doc.gov/File%20Library/Events/2015. Cited Nov. 4, 2018.

    Google Scholar 

  21. Khadzhiev, S.N., Sagitov, S.A., Lyadov, A.S., Kulikova, M.V., and Krylova, A.Yu., Petrol. Chem. 2014, vol. 54, no. 2, pp. 88–193.

    Article  CAS  Google Scholar 

  22. Makaryan, I.A., Rudakova, M.I., and Savchenko, V.I., Mir Nefteprod. Vestn. Neft. Komp. 2011, no. 11, pp. 3–9.

    Google Scholar 

  23. Ionin, D.A., Kolesnichenko, Т.М., Bukina, Z.M., and Khadzhiev, S.N., Petrol. Chem., 2015, vol. 55, no. 2, pp. 112–117.

    Article  CAS  Google Scholar 

  24. Rynok metanola (Methanol Market), Argus Media Group, 2018, pp. 1–6. http://www.argusmadia.com. Cited Nov. 4, 2018.

  25. Khadzhiev, S.N., Magomedova, M.V., and Peresypkina, E.G., Petrol. Chem. 2016, vol. 56, no. 9, pp. 788–797.

    Article  CAS  Google Scholar 

  26. Chen, D., Holmen, A., and Moljord, K., Micropor. Mesopor. Mater. 2012, vol. 164, pp. 239–250.

    Article  CAS  Google Scholar 

  27. Wang, F., Zhang, Q., Hu, S., Gong, Y.J., and Dou, T., Ind. Catal. 2012, vol. 20, no. 7, p. 17.

    Google Scholar 

  28. Jang, H.G,, Min, H.K., Lee, J.K., Hong, S.B., and Seo, G., Appl. Catal. A 2012, vol. 120, pp. 437–438.

    Google Scholar 

  29. Egeblad, K., Christensen, C.H., Kustova, M., and Christensen, C.H., Chem. Mater. 2008, vol. 20, p. 946.

    Article  CAS  Google Scholar 

  30. Meiv, C.S., Wen, P.Y., Liu, Z.C., Liu, H.X., Wang, Y.D., Yang, W.M., Xie, Z.K., Hua, W.M., and Gao, Z., J. Catal., 2008, vol. 258, p. 243.

    Article  CAS  Google Scholar 

  31. Jiao, Y.L., Jiang, C.H., Yang, Z.M., and Zhang, J.S., Micropor. Mesopor. Mater. 2012, vol. 162, p. 152.

    Article  CAS  Google Scholar 

  32. Ivanova, S., Vanhaecke, E., Dreibine, L., Louis, B., Pham, C., and Pham-Huu, C., Appl. Catal. A 2009, vol. 359, p. 151.

    Article  CAS  Google Scholar 

  33. Wen, M., Wang, X.Y., Han, L.P., Ding, J., Sun, Y., Liu, Y., and Lu, Y., Micropor. Mesopor. Mater. 2015, vol. 206, p. 8.

    Article  CAS  Google Scholar 

  34. Omojola, T., Cherkasov, N., Rebrov, E.V., Lukyanov, D.B, and Perera, S.P., Chem. Eng. Process. 2018, vol. 131, pp. 137–143.

    Article  CAS  Google Scholar 

  35. Patent US 2011/039954, Publ. 2011.

  36. Lee, S.-Ch., Jang, J.-H., Lee, B.-Y., Kang, M.-Ch., Kang, M., and Choung, S.-J., Appl. Catal. A 2003, vol. 253, p. 293.

    Article  CAS  Google Scholar 

  37. Kim, J.-S., Lee, S., Lee, S.-B., Choi, S.-B., and Lee, K.- W., Catal. Today 2006, vol. 115, p. 228.

    Article  CAS  Google Scholar 

  38. Wei, J., Ge, Q., Yao, R., Wen, Zh., Fang, Ch., Guo, L., Xu, H., and Sun, J., Nature Commun. 2017, vol. 8, p. 15174.

    Article  Google Scholar 

  39. Patent RU 2440189, Publ. 2012.

  40. Haro, P., Trippe, F., Stahl, R., and Henrich, E., Appl. Energy 2013, vol. 108, p. 54.

    Article  CAS  Google Scholar 

  41. Wang, Zh., He, T., Li, J., Wu, J., Qin, J., Liu, G., Han, D.,Zh., and Wu, J., Fuel 2016, vol. 186, p. 587.

    Article  CAS  Google Scholar 

  42. Liu, G. and Larson, E.D., Energy Procedia 2014, vol. 63, p. 7367.

    Article  CAS  Google Scholar 

  43. Patent RU 2473663, Publ. 2013.

  44. Patent RU 2458966, Publ. 2012.

  45. Patent RU 2524957, Publ. 2014.

  46. Khadzhiev, S.N., Magomedova, M.V., and Peresypkina, E.G., Petrol. Chem. 2016, vol. 56, no. 3, pp. 181–196.

    Article  CAS  Google Scholar 

  47. Ahn, J.H., Temel, B., and Iglesia, E., Angew. Chem. Int. Ed. 2009, vol. 48, p. 3814.

    Article  CAS  Google Scholar 

  48. Patent RU 2346921, Publ. 2005.

  49. Patent US 2004/133055, Publ. 2004.

  50. Patent EP 2060550, Publ. 2007.

  51. Patent EP 2060551, Publ. 2007.

  52. Olah, G.A., Goeppert, A., and Surya Prakash, G.K., Beyond Oil and Gas: The Methanol Economy, Wiley–VCH, 2006.

    Google Scholar 

  53. Tian, P., Wei, Y., Ye, M., and Liu, Z., ACS Catal., 2015, vol. 5, no. 3, pp. 1922–1938.

    Article  CAS  Google Scholar 

  54. Koempel, H. and Liebner, W., in 8th Int. Natural Gas Conversion Symp., 2007, vol. 167, p. 261.

    Google Scholar 

  55. Patent US 6852897 B2, Publ. 2005.

  56. Khadzhiev, S.N., Magomedova, M.V., and Peresypkina, E.G., Petrol. Chem. 2015, vol. 55, no. 7, pp. 503–521.

    Article  CAS  Google Scholar 

  57. Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Fokin, I.G., Nikitin, A.V., and Strekova, L.N., Chem. Eng. J. 2015, vol. 282, pp. 206–212.

    Article  CAS  Google Scholar 

  58. Shan, J., Li, M., Allard, L.F., Lee, S., and Flytzani-Stephanopoulos, M., Nature 2017, vol. 551, pp. 605–611.

    Article  CAS  PubMed  Google Scholar 

  59. Ravi, M., Ranocchiari, M., and Van Bokhoven, J.A., Angew. Chem. Int. Ed. 2017, vol. 56, no. 52, pp. 16464–16483.

    Article  CAS  Google Scholar 

  60. Yoo, J.S., Direct Conversion of Methane to Methanol, Stanford Univ., 2013. http://large.stanford.edu/courses/2013/ph240/yoo2/. Cited Nov. 4, 2018.

    Google Scholar 

  61. Narsimhan, K., Iyoki, K., Dinh, K., and Roman-Leshkov, Yu., ACS Cent. Sci., 2016, vol. 2, no. 6, pp. 424–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shan, J., Li, M., Allard, L.F., Lee, S., and Flytzani-Stephanopoulos, M., Nature 2017, vol. 551, pp. 605–608.

    Article  CAS  PubMed  Google Scholar 

  63. Patent US 4205194, Publ. 1980.

  64. Farrell, B.L., Igenegbai, V.O., and Linic, S., ACS Catal., 2016, vol. 6, pp. 4340–4346.

    Article  CAS  Google Scholar 

  65. Takahashi, K., Miyazato, I., Nishimura, S., and Ohyama, J., ChemCatChem 2018, vol. 10, pp. 3223–3228.

    Article  CAS  Google Scholar 

  66. Patent US 9944573, Publ. 2018.

  67. Hydrogen Generation Market Size, Share & Trends Analysis Report by Application (Coal Gasification, Steam Methane Reforming), by Technology, by System (Merchant, Captive), and Segment Forecasts, 2018–2025, Publ. June 2018. Cited Nov. 4, 2018.

  68. Global Hydrogen Fuel Cell Vehicle Market 2017–2023: Market to Grow at a CAGR of 56.3%, Dublin, Sept. 7, 2018. https://www.prnewswire.com/news-releases/global-hydrogen-fuel-cell-vehicle-market. Cited Nov. 4, 2018.

  69. Upham, D.Ch., Agarwal, V., Khechfe, A., and Snodgrass, Z.R., Science 2017, vol. 358, no. 6365, pp. 917–921.

    Article  CAS  PubMed  Google Scholar 

  70. Abbas, H.F. and Wan Daud, W., Int. J. Hydrogen Energy 2010, vol. 35, no. 3, pp. 1160–1190.

    Article  CAS  Google Scholar 

  71. Rahman, M.S., Croiset, E., and Hudgins, R.R., Top. Catal. 2006, vol. 37, no. 2, pp. 137–145.

    Article  CAS  Google Scholar 

  72. Amin, A.M., Croiset, E., and Epling, W., Int. J. Hydrogen Energy 2011, vol. 36, no. 4, pp. 2904–2935.

    Article  CAS  Google Scholar 

  73. Paxman, D., Trottier, S., Nikoo, M., Secanell, M., and Ordorica-Garcia, G., Energy Procedia 2014, vol. 49, pp. 2027–2036.

    Article  CAS  Google Scholar 

  74. Schultz, I. and Agar, D.W., Int. J. Hydrogen Energy 2015, vol. 40, no. 35, pp. 11422–11427.

    Article  CAS  Google Scholar 

  75. Abanades, A., Rathnam, R.K., Geißler, T., Heinzel, A., Mehravaran, K., Muller, G., Plevan, M., Rubbia, C., Salmieri, D., Stoppel, L., Stuckrad, S., Weisenburger, A., Wenninger, H., and Wetzel, T., Int. J. Hydrogen Energy 2015, vol. 41, no. 9, pp. 8159–8167.

    Google Scholar 

  76. Fau, G., Gascoin, N., and Steelant, J., J. Anal. Appl. Pyrol., 2014. doi: 10.1016/j.jaap.2014.05.022. https://hal. archives-ouvertes.fr/hal-01253268. Cited Nov. 4, 2018.

    Google Scholar 

  77. Geibler, T., Abanades, A., Heinzel, A., Mehravara, K., Muller, G., Rubbia, C., Saimieri, D., Stoppel, L., Stuckrad, S., Weisenburger, A., Wenniger, H., and Wetzel, Th., Chem. Eng. J. 2016, vol. 299, pp. 192–200.

    Article  CAS  Google Scholar 

  78. Engbaek, J.S., Vendelbo, S.B., and Mortensen, P.M., Angew. Chem. Int. Ed. 2018, vol. 57, no. 33, pp. 10620–10624.

    Article  CAS  Google Scholar 

  79. Garcia-Sancho, C., Guil-Lopez, R., Sebastian-Lopez, A., and Fierro, J., Int. J. Hydrogen Energy 2018, vol. 43, p. 9607. https://doi.org./10.1016/j.ijhydene.2018.04.021. Cited Nov. 4, 2018.

    Article  CAS  Google Scholar 

  80. Urdiana, G., Valdez, R., Lastra, G., and Olivas, A., Mater. Lett. 2018, vol. 217, pp. 9–12. https://doi.org./10.1016/j. matlet.2018.01.033. Cited Nov. 4, 2018.

    Article  CAS  Google Scholar 

  81. Jasinski, M., Dors, M., Nowakowska, H., and Mizeraczyk, J., Chem. Listy 2008, vol. 102, pp. 1332–1337.

    Google Scholar 

  82. Producing Hydrogen by Plasma Pyrolysis of Methane, Alabama: Marshall Space Flight Center, Sept. 2010. https://www.techbriefs.com/component/content/article/tb/techbriefs/manufascturing-process. Cited Nov. 4, 2018.

  83. Nunez-Zarur, F., Solans-Monfort, X., and Restrero, A., Inorg. Chem. 2017, vol. 56, pp. 10458–10473.

    Article  CAS  PubMed  Google Scholar 

  84. Soulivong, D., Coperet, Ch., Thivolle-Cazat, J., Basset, J.-M., Maunders, B.M., Pardy, R.B.A., and Sunley, G.J., Angew. Chem. Int. Ed. 2004, vol. 43, no. 40, pp. 5366–5369.

    Article  CAS  Google Scholar 

  85. Patent US 2003/0045765 A1, Publ. 2003.

  86. Patent US 7378564 B2, Publ. 2008.

  87. Patent WO 2015/079321 A3, Publ. 2015.

  88. Patent WO 2017/009778 A1, Publ. 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sedov.

Additional information

Original Russian Text © I.V. Sedov, I.A. Makaryan, P.K. Berzigiyarov, M.V. Magomedova, A.L. Maksimov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 12, pp. 1693−1707.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedov, I.V., Makaryan, I.A., Berzigiyarov, P.K. et al. Development of Technologies for More Efficient Deep Processing of Natural Gas. Russ J Appl Chem 91, 1922–1936 (2018). https://doi.org/10.1134/S1070427218120030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218120030

Keywords

Navigation