Skip to main content
Log in

Microreactors as the new way of intensification of heterogeneous processes

  • Processes and Devices of Chemical Manufactures
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Microstructure reactors (microreactors) in recent decades became one of the most actively studied subjects of the reaction equipment aimed at intensification of chemical processes and increase in their safety. It is not surprising because due to miniature dimensions of microstructures which do not exceed 2 mm microreactors contribute to minimization of the material at their production as well as raw material and energy in the process of exploitation. Moreover, due to acceleration of heat and mass transfer the productivity of equipment with microreactors in a range of cases is significantly higher than classical batch reactors applied in industry. The brief overview of the modern development and achievements of microreactor technology is given in this article by an example of heterogeneous reaction systems which are different by their nature and occur in different types of microreactors: phase-transfer catalysis, biocatalysis, and synthesis of nanoparticles. A special attention in the article is paid to the aspects of intensification of the considered processes because exactly the possibility of intensification makes microreactor technology attractive for the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hessel V., Proc. 4th Int. Conf. on Microreaction Tech., IMRET 4, Atlanta, 2000, pp. 174–187.

  2. Coleman, J.W. and Garimella, S., Int. J. Multiphase Flow, 1997, vol. 23, pp. 1147–1170.

    Article  Google Scholar 

  3. Schubert, K., Proc. 2nd Int. Conf. on Microreaction Tech., IMRET 2, Ehrfeld, W., Rinard, I.H., Wegeng, R.S., Eds., New Orleans, 1998, pp. 88–95.

  4. Ehrfeld, W., Hessel, V., and Haverkamp, V., Ull-mann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, 1999.

    Google Scholar 

  5. Hessel, V., Proc. 3rd Int. Conf. on Microreaction Tech., IMRET 3, Matlosz, M., Ehrfeld, W., and Baselt, J.P., Berlin: Springer-Verlag, 2000. pp. 526–540.

    Google Scholar 

  6. Ehrfeld, W., Hessel, V., and Lowe, H., Proc. 4th Int. Conf. on Microreaction Tech., IMRET 4, Atlanta, 2000.

  7. Jahnisch, K., Hessel, V., Lowe, H., and Baerns, M. Angew. Chem. Int. Ed., 2004, vol. 43, no. 4, pp. 406–446.

    Article  Google Scholar 

  8. Kashid, M.N., and Kimi-Minsker, L., Ind. Eng. Chem. Res., 2009, vol. 48, no. 14, pp. 6465–6485.

    Article  CAS  Google Scholar 

  9. Borovinskaya, E.S. and Reshetilovskii, V.P., Khim. Prom-st’, 2008, vol. 85, no. 5, pp. 1–31.

    Google Scholar 

  10. Roberge, D.M., Zimmermann, B., Rainone, F., Gottsponer, M., Eyholzer, M., and Kockmann, N., Organic Process Research & Development, 2008, vol. 12, no. 5, pp. 905–910.

    Article  CAS  Google Scholar 

  11. Schmalz, D., Haberl, M., Oldenburg, N., Grund, M., Muntermann, H., and Kunz, U., Chem. Ing. Tech., 2005, vol. 77, no. 7. pp. 859–856.

    Article  CAS  Google Scholar 

  12. Fukuyama, T., Rahman, Md T., and Ryu, I. In: Organic Synthesis and Catalysis: Organic chemistry in microreactors, Wirth, T., Eds., Wiley: Weinheim, 2008, p. 59.

    Chapter  Google Scholar 

  13. Watts, P., Chem. Ing. Tech., 2004, vol. 76, no. 5, pp. 555–600.

    Article  CAS  Google Scholar 

  14. Mikami, K., J. Fluor. Chem., 2006, vol. 127, p. 592.

    Article  CAS  Google Scholar 

  15. Burns, J.R. and Ramshaw, C., Proc. 4th Int. Conf. on Microreaction Tech., IMRET 4, Atlanta, 2000, pp. 133–140.

  16. Jarrouse, J.C.R., Hebd. Scanes Acad. Sci., Ser. C, 1951, vol. 232, pp. 1424–1426.

    Google Scholar 

  17. Freeman, H.H., Pure Appl. Chem., 1986, vol. 58, pp. 857–868.

    Article  Google Scholar 

  18. Starks, C.M., Am. Chem. Soc. Symp. Ser., 1985, vol. 326, pp. 1–7.

    Google Scholar 

  19. Ford, W.T. and Tomoi, M., Advances in Polymer Sciences, vol. 55, Berlin/Heidelberg/New York/ Tokyo: Springer-Verlag, 1984, 163 p.

    Google Scholar 

  20. Cocagne, P., Elguero, J., and Gallo, R., Heterocycles, 1983, vol. 20, no. 7, pp. 1379–1406.

    Article  CAS  Google Scholar 

  21. Hisamoto, H., et al.. Chem. Commun., 2001, pp. 2662–2663.

  22. Ueno, M., Hisamoto, H., Kitamorib, T., and Kobayashi, S., Chem. Commun., 2003, pp. 936–937.

  23. Rieu, J.-P., Boucherie, A., Cousse, H., and Mouzin, G., Tetrahedron, 1986, vol. 42, no. 15, pp. 4095–4131.

    Article  CAS  Google Scholar 

  24. Makosza, M. and Serafin, B., Rocz. Chem., 1965, vol. 39, pp. 1223–1230.

    CAS  Google Scholar 

  25. Makosza, M. and Serafin, B., Rocz. Chem., 1965, vol. 39, pp. 1401–1408.

    CAS  Google Scholar 

  26. Makosza, M. and Serafin, B., Rocz. Chem., 1965, vol. 39, pp. 1595–1602.

    CAS  Google Scholar 

  27. Makosza, M. and Serafin, B., Rocz. Chem., 1965, vol. 39, pp. 1799–1803.

    CAS  Google Scholar 

  28. Mammitzsch, L., Untersuchung zum Einsatz von modularen Mikroreaktionsanlagen am Beispiel der Alkylierung von Phenylacetoni-tril unter Phasentransferbedingungen, Dresden: TU Dresden, 2006.

    Google Scholar 

  29. Borovinskaya, E.S., Mammitzsch, L., Uvarov, V.M., Schael, F., and Reschetilowski, W., Chem. Ing. Tech., 2009, vol. 32, no. 6, pp. 919–925.

    CAS  Google Scholar 

  30. Vasic-Racki, D., In Industrial Biotransformations: History of Industrial Biotransformations — Dreams and Realities, Liese, A. Seelbach, K., and Wandrey, C., Wiley-VCH Verlag, 2006, p. 3.

  31. Pasteur, L.C. R., Acad. Sci. (Paris), 1858, vol. 46, pp. 615–618.

    Google Scholar 

  32. Neuberg C. and Hirsch J., Biochem. Z., 1921, vol. 115, pp. 282–310.

    CAS  Google Scholar 

  33. Neidelman, S.L., Hydrocarbon Process, 1980, vol. 59, no. 11, pp. 135–138.

    Google Scholar 

  34. McCoy, M., Chem. Eng., 1998, vol. 76, no. 25, pp. 13–19.

    Google Scholar 

  35. Storhas, W., Bioreaktoren und periphere Einrichtungen, Vierweg & Sohn, 1994, p. 6.

  36. Illanes, A., Altamirano, C., and Wilson, L., In: Enzym Biocatalysis. Principles and Applications: Homogeneous Enzyme Kinetics, Illanes, A., Ed., Springer, 2008, p.107.

  37. Koch, K., Rutjes, P.J.T., van Hest, J.C.M., In: Organic chemistry in microreactors: Bioorganic reactions, Wirth, T., Ed., Wiley: Weinheim, 2008, p. 183.

    Google Scholar 

  38. Frohlich, P. and Bertau, M., Chem. Ing. Tech., 2010, vol. 82, no. 1–2, pp. 51–63.

    Google Scholar 

  39. Jaeger, K.-E. et. al., FEMS Microbiol. Rev., 1994, vol. 15, pp. 29–63.

    Article  CAS  Google Scholar 

  40. Belter, D., Anal. Bioanal. Chem., 2006, vol. 385, pp. 416–418.

    Article  Google Scholar 

  41. Koch, K. et al., Biotechnology and Bioengineering, 2008, vol. 99, no. 4, pp. 1028–1033.

    Article  CAS  Google Scholar 

  42. Miyazaki, M. and Maeda, H., Trends in Biotechnology, 2006, vol. 24, no. 10, pp. 463–470.

    Article  CAS  Google Scholar 

  43. Bertau, M., Prinzipien der Ganzzell-Biokatalyse mit Saccharomyces cerevisiae, Dresden: TU Dresden, 2005, p.12.

    Google Scholar 

  44. Kliche, S., Rauchle, K., Bertau, M., and Reschetilowski, W., Chem. Ing. Tech., 2009, vol. 81, no. 3, pp. 343–347.

    Article  CAS  Google Scholar 

  45. Bohn, M., Leppchen, K., Katzberg, M., Steingroewer, J., Weber, J., Bley, T., and Bertau, M., Org. Biomol. Chem., 2007, vol. 5, pp. 3456–3463.

    Article  CAS  Google Scholar 

  46. Yadav, J.S. et al., J. Org. Chem., 2002, vol. 67, pp. 3900–3903.

    Article  CAS  Google Scholar 

  47. Wosten, H.A.B. and Willey, J.M., Microbiology, 2000, vol. 146, pp. 767–773.

    CAS  Google Scholar 

  48. Chin-Joe I. et al, Biotechnol. Bioeng., 2000, vol. 69, no. 4, pp. 370–376.

    Article  CAS  Google Scholar 

  49. Chin-Joe I. et al., Enzyme Microb. Technol., 2002, vol. 31, no. 5, pp. 665–672.

    Article  CAS  Google Scholar 

  50. Parak, W.J. et. al., Nanoparticles. From Theory to Application, Schmid, G., Ed., Wiley-Verlag, 2004, p. 4.

  51. Uyeda, R., Prog. Mater. Sci., 1991, vol. 35, pp. 1–96.

    Article  CAS  Google Scholar 

  52. Friedlander, S.K., Jang, H.D., and Ryu, K.H., Appl. Phy. Lett., 1998, vol. 72, no. 2, pp. 173–175.

    Article  CAS  Google Scholar 

  53. Zachariah, M.R., Proc. of the Joint NSF-NIST Conf. on Ultrafine Particle Engineering, Arlington, VA, 1994.

  54. Calcote, H.F. and Keil, D.G., Proc. of the Joint NSF-NISTConf. on Nanoparticles, Arlington, VA, 1997.

  55. Axelbaum, R.L., Proc. of the Joint NSF-NIST Conf. on Nanoparticles, Arlington, VA, 1997.

  56. Pratsinis, S.E., Proc. of the Joint NSF-NIST Conf. on Nanoparticles, Arlington, VA, 1997.

  57. Rao, N.P., Tymiak, N., Blum, J., Neuman, A., Lee, H.J., Girshick, S.L., and McMurry, P.H., Heberlein J. Proc. of the Joint NSF-NIST Conf. on Nanoparticles, Arlington, VA, 1997.

  58. Becker, M.F., Brock, J.R., Cai, H., Chaudhary, N., Henneke, D., Hilsz, L., Keto, J.W., Lee, J., Nichols, W.T., and Glicksman, H.D., Proc. of the Joint NSF-NIST Conf. on Nanoparticles, Arlington, VA, 1997.

  59. Volkov, N.B., Maier, A.E., Sedoi, V.S., Fen’ko, E.L., and Yalovets, A.P., Zh. Tekhn. Fiz., 2010, vol. 80, no. 4, pp. 77–80.

    Google Scholar 

  60. Messing, G.L., Zhang, S., Selvaraj, U., Santoro, R.J., and Ni, T., Proc. of the Joint NSF-NIST Conf. on Ultrafine Particle Engineering, Arlington, VA, 1994.

  61. Ivanovskaya, M. I., Tolstik, A. I., and Pan’kov, V.V., Neorg. Materialy, vol. 45, no. 11, pp. 1398–1403.

  62. Mora de la, J.F., Loscertales, I.G., Rosell-Llompart, J., Serageldin, K., and Brown, S., Proc. of the Joint NSF-NIST Conf. on Ultrafine Par-ticle Engineering, Arlington, VA, 1994.

  63. Berndt, C.C., Karthikeyan, J., Chraska, T., and King, A.H., Proc. of the Joint NSF-NIST Conf. on Nanoparticles, Arlington, VA, 1997.

  64. Tsytovich, V.N., Usp Fiz. Nauk, 2007, vol. 177, no. 4, pp. 427–472.

    Article  Google Scholar 

  65. Castro de, C.L. and Mitchell, B.S., Synthesis, Functionalization and Surface Treatment of Nanoparticles, Baraton, M.I., Ed., American Scientific Publishers: Stevenson Ranch (CA, USA), 2004.

    Google Scholar 

  66. Martin, J.I., Nogues, J., Liuc, K., Vicente, J.L., and Schullerc, I.K., J. Magnetism Magnetic Materials, 2003, vol. 256, pp. 449–501.

    Article  CAS  Google Scholar 

  67. Ausanio, G., Amoruso, S., Barone, A.C., Bruzzese, R., Iannotti, V., Lanotte, L., and Vitiello, M., Appl. Surf. Sci., 2006, vol. 252, no. 13, pp. 4678–4684.

    Article  CAS  Google Scholar 

  68. Suslick, K.S., Hyeon, T., and Fang, M., Chem. Mater., 1996, vol. 8, pp. 2172–2179.

    Article  CAS  Google Scholar 

  69. Baranchikov, A.E., Ivanov, V.K., and Tret’yakov, Yu.D., Usp. Khimii, 2007, vol. 76, no. 2, pp. 147–168.

    Google Scholar 

  70. Kishida, M., Fujita, T., Umakoshi, K., Ishiyama, J., Nagata, H., and Wakabayashi, K., Chem. Commun., 1995, pp. 763–764.

  71. Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., and Brus, L.E., J. Am. Chem. Soc., 1990, vol. 112, pp. 1327–1332.

    Article  CAS  Google Scholar 

  72. Pileni, M.P., Motte, L., and Petit, C. Chem. Mater., 1992, vol. 4, pp. 338–345.

    Article  CAS  Google Scholar 

  73. Yashin, K.D., Osipovich, V.S., and Pitsuk S.E., Nano-Mikrosistemnaya Tekhnika, 2007, no. 5, s. 70–74.

  74. Arriagada, F.J., Osseo-Asave, K., J. Colloid Interface Sci., 1995, vol. 170, p. 8.

    Article  CAS  Google Scholar 

  75. Hopwood, J. and Mann, S., Chem. Mater., 1997, vol. 9, pp. 1819–1828.

    Article  CAS  Google Scholar 

  76. Pillai, V., Kumar, P., Hou, M.J., Ayyub, P., and Shah, D.O., Adv. Colloid. Interface Sci., 1995, vol. 55, pp. 241–269.

    Article  CAS  Google Scholar 

  77. Stognii, A.I., Pashkevich, M.V., Novitskii, N.N., Gribkov, B.A., Mironov, V.L., Ketsko, V. A., Fettar, F., and Garad, H., Neorg Mat., vol. 45, no. 11, pp. 1323–1329.

  78. Bahnemann, D.W., Kormann, C., and Hoffmann, M.R., J. Phys. Chem., 1987, vol. 91, no. 14, pp. 3789–3798.

    Article  CAS  Google Scholar 

  79. Tagaki, M., Maki, T., Miyahara, M., and Mae, K., Chem. Eng. J., 2004, vol. 101, pp. 269–273.

    Article  Google Scholar 

  80. Kung, H.H. and Ko, E.I., Chem. Eng. J., 1996, vol. 64, pp. 203–214.

    CAS  Google Scholar 

  81. Shchukin, D. and Sukhorukov, G.B., Adv. Mat., 2004, vol. 16, no. 8, pp. 671–682.

    Article  CAS  Google Scholar 

  82. Vicum, L., Mazzotti, M., and Baldyga, J., Chem. Eng. Tech., 2003, vol. 26, no. 3, pp. 325–333.

    Article  CAS  Google Scholar 

  83. Baldyga, J., Pdgorska, W., and Pohorecki, R., Chem. Eng. Sci., 1995, vol. 50 no. 8, pp. 1281–1300.

    Article  CAS  Google Scholar 

  84. Verwey, E.J.W. and Overbeck J.T.G., Theory of the Stability of Lyophobic Colloids, Elsevier Science Publishers: New York, USA 1948, 205 p.

    Google Scholar 

  85. Yokota, M., et al., Chem. Eng. Sci., 2000, vol. 55, no. 19, pp. 4379–4382.

    Article  CAS  Google Scholar 

  86. Petrova, A., Hintz, W., and Thomas, J., Chem. Ing. Tech., 2008, vol. 80, no. 3, pp. 359–363.

    Article  CAS  Google Scholar 

  87. Schwarzer, H.-C. and Peukert, W., Chem. Eng. Tech., 2002, vol. 25, no. 6, pp. 657–661.

    Article  CAS  Google Scholar 

  88. Penth, B., German Patent 10 2005 048 201 A1, 2005.

  89. Rufer, A., Rauchle, K., Krahl, F., and Reschetilowski, W., Chem. Ing. Tech., 2009, vol. 81, no. 12, pp. 1949–1954.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Borovinskaya.

Additional information

Dedicated to the 65th anniversary of the Rector of the St. Petersburg State Technological Institute (Technical University), Doctor of Technical Science A.S. Dudyrev

Original Russian Text © E.S. Borovinskaya, V.P. Reshetilovskii, 2010, published in Khimicheskaya Promyshlennost’, 2010, Vol. 88, No. 2, pp. 55–66.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovinskaya, E.S., Reshetilovskii, V.P. Microreactors as the new way of intensification of heterogeneous processes. Russ J Appl Chem 84, 1094–1104 (2011). https://doi.org/10.1134/S107042721106036X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721106036X

Keywords

Navigation