Skip to main content
Log in

The case for programmed mammal aging

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Are the deteriorative processes associated with mammal aging purposely and actively programmed by the organism’s design or are they merely a passive result of the organism’s inability to better resist damage from fundamental deteriorative processes? This question has now persisted for 150 years. Historically, observational evidence generally favors active aging. However, the nature of the evolution process has been thought to preclude evolution and retention of organism design features that purposely cause deterioration or otherwise actively limit life span. More recently, discoveries such as aging genes have increased the weight of empirical evidence for programmed aging and our increasing knowledge regarding the nature of the mammal inheritance process has added to questions regarding the validity of traditional evolutionary mechanics concepts. Alternatives to traditional mechanics concepts have subsequently appeared, most of which support active aging, and theories of biological aging based on the alternative evolutionary mechanics theories have been produced.

This article compares active and passive aging concepts in light of various observations, provides an overview of the historical interaction between aging theory and evolution theory, and outlines major issues that currently exist regarding the mechanics of evolution. A specific candidate structure for an active mammal aging mechanism is presented and a specific evolutionary rationale, an evolvability theory of aging, which allows for the evolution of that mechanism, is suggested.

This issue has substantial public health implications because understanding of massively age-dependent conditions such as cancer demands understanding of the aging process. Also, active theories suggest significant additional possibilities for treatment of age-related conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weismann, A., Uber die Dauer des Lebens, Jena: Fischer, 1862.

    Google Scholar 

  2. Cockburn, A., Behavioral Biology and Sociobiology, 1988, vol. 22, pp. 195–202.

    Google Scholar 

  3. National Center for Health Statistics, Vital Statistics of the United States, vol. 2: Mortality, Washington: Government Printing Office, 2000.

    Google Scholar 

  4. Eriksson, M., Brown, W., Gordon, L., Glynn, M., Singer, J., Scott, L., and Erdos, M., Nature, 2003, vol. 15, no. 423, pp. 293–298.

    Article  Google Scholar 

  5. Gray, M., Shen, J., Kamath-Loeb, A., Blank, A., Sopher, B., Martin, G., Oshima, J., and Loeb, L., Nat. Genet., 1997, vol. 17, no. 1, pp. 100–103.

    Article  CAS  Google Scholar 

  6. Spindler, S., Mech. Ageing Dev., 2005, vol. 126, no. 9, pp. 960–966.

    Article  CAS  Google Scholar 

  7. Bartke, A., Science, 2003, vol. 28, pp. 1346–1351.

    Google Scholar 

  8. Wodinsky, J., Science, 1977, vol. 198, pp. 948–951.

    Article  CAS  Google Scholar 

  9. Kenyon, C., et al., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 14, pp. 5947–5952.

    Article  Google Scholar 

  10. Darwin, C., On the Origin of Species, New York: Random House, 1998, pp. 264.

    Google Scholar 

  11. Medawar, P., An Unsolved Problem of Biology, London: Lewis, 1952.

    Google Scholar 

  12. Holliday, R., Ann. NY Acad. Sci., 2006, vol. 1354, pp. 1–9.

    Article  Google Scholar 

  13. de Grey, A., Ann. NY Acad. Sci., 2007, vol. 1119, pp. 296–305.

    Article  Google Scholar 

  14. Williams, G., Evolution, 1957, vol 11, pp. 398–411.

    Article  Google Scholar 

  15. Kirkwood, T. and Holliday, R., Proc. R. Soc. Lond., 1979, vol. 205, pp. 531–546.

    Article  CAS  Google Scholar 

  16. Goldsmith, T., The Evolution of Aging, Annapolis: Azinet Press, 2006, 2nd ed.

    Google Scholar 

  17. Bowles, J., Quart. Rev. Biol., 2000, vol. 73, pp. 3–49.

    Google Scholar 

  18. Olshansky, S., Hayflick, L., and Carnes, B., Sci. Amer., 2004, vol. 14, pp. 3.

    Google Scholar 

  19. Wayne-Edwards, V., Animal Dispersion in Relation to Social Behaviour, Edinburgh: Oliver & Boyd, 1962.

    Google Scholar 

  20. Hamilton, W., Amer. Natur., 1963, vol. 97, pp. 354–356.

    Article  Google Scholar 

  21. Dawkins, R., The Selfish Gene, Oxford: Oxford Univ. Press, 1986, revised ed.

    Google Scholar 

  22. Wagner, G. and Altenberg, L., Evolution, 1996, vol. 50, no. 3, pp. 967–976.

    Article  Google Scholar 

  23. Mittledorf, J., Evol. Ecol. Res., 2006, vol. 8, pp. 561–574.

    Google Scholar 

  24. Libertini, G., Sci. World J., 2006, vol. 31, no. 6, pp. 1086–1108.

    Google Scholar 

  25. Skulachev, V., Biochemistry (Moscow), 1997, vol. 62, no. 11, pp. 1191–1195.

    CAS  Google Scholar 

  26. Goldsmith, T., Med. Hypp., 2004, vol. 62, no. 2, pp. 304–308.

    Article  Google Scholar 

  27. Breakefield, P., Trends Ecol. Evol., 2006, vol. 21, no. 7, pp. 362–368.

    Article  Google Scholar 

  28. Griffiths, A., An Introduction to Genetic Analysis, New York: Freeman, 1993, 5th ed., ch. 5.

    Google Scholar 

  29. Wynne-Edwards, V., Evolution Through Group Selection, Oxford: Blackwell. 1986.

    Google Scholar 

  30. Price, G., Nature, 1970, vol. 227, pp. 520–521.

    Article  CAS  Google Scholar 

  31. Williams, G., Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought, Princeton: Princeton Univ. Press, 1966.

    Google Scholar 

  32. Alkan, C., Eichler, E., Bailey, J., Sahinalp, S., and Tuzon, E., J. Comput. Biol., 2004, vol. 11, no. 5, pp. 933–944.

    Article  CAS  Google Scholar 

  33. Jurka, J., Kapitinov, V., Kohany, O., and Jurka, M., Annu. Rev. Genom. Hum. Genet., 2007, vol. 8, pp. 241–259.

    Article  CAS  Google Scholar 

  34. Mattick, J., Curr. Opin. Genet. Dev., 1994, vol. 4, pp. 823–831.

    Article  CAS  Google Scholar 

  35. Newth, D., Artif. Life, 2007, vol. 13, no. 3, pp. 249–258.

    Article  Google Scholar 

  36. Dawkins, R., The Selfish Gene, Oxford: Oxford Univ. Press, 1990.

    Google Scholar 

  37. Promislow, D. and Pletcher, S., Mech. Aging Dev., 2002, vol. 123, pp. 841–850.

    Article  Google Scholar 

  38. Poynter, J.N., Gruber, S.B., Higgins, P.D., Almog, R., Bonner, J.D., Rennert, H.S., Low, M., Greenson, J.K., and Rennert, G., New England J. Med., 2005, vol. 352, pp. 2184–2192.

    Article  CAS  Google Scholar 

  39. Skulachev, V., Anisimov, N., Antonenko, Y., Bakeeva, L., Chernyak, B., Erichev, B., et al, Biochim. Biophys. Acta, 2009, doi:10.1016/j.bbabio.2008.12.008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Goldsmith.

Additional information

Original Russian Text © T.C. Goldsmith, 2010, published in Rossiiskii Khimicheskii Zhurnal, 2010, Vol. 53, No. 3, pp. 45–56.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldsmith, T.C. The case for programmed mammal aging. Russ J Gen Chem 80, 1434–1446 (2010). https://doi.org/10.1134/S107036321007039X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321007039X

Keywords

Navigation