Skip to main content
Log in

Thermal structure and thickness of the lithospheric mantle underlying the Siberian Craton from the kraton and kimberlit superlong seismic profiles

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

A self-consistent approach is proposed for the investigation of the thermal conditions, chemical composition, and internal structure of the upper mantle of the Earth. Using this approach, the thermal state of the lithospheric mantle beneath the Siberian Craton (SC) is reconstructed from P velocities, taking into account the phase transitions, anharmonicity, and the effects of anelasticity. The velocities of seismic waves are more sensitive to temperature than to the composition of the mantle rocks, which allows the velocity models to be effectively used for reconstruction of the thermal regime of the mantle. The temperature at depths 100–300 km is reconstructed by inversion of the Kraton and Kimberlit superlong seismic profiles for compositions of the garnet harzburgite, lherzolite, and intermediate composition of garnet peridotite. The averaged temperature in the normal continental mantle is reconstructed by inversion of the IASP91 reference model for depleted and fertile substance. One-dimensional models and two-dimensional thermal fields undergo a substantial fall in temperature (∼300–600°C) beneath the Siberian Craton as compared to the temperatures of the continental mantle and paleotemperatures inferred from the thermobarometry of xenoliths. Temperature profiles of the Siberian Craton deduced from seismic data lie between the conductive geotherms of 32.5–40.0 mW/m2 and below the P(H)-T values obtained for low- and high-temperature xenoliths from the Mir, Udachnaya, and Obnazhennaya kimberlite pipes. The thickness of the thermal lithosphere estimated from the intersection with the potential adiabat is 300–320 km, which is consistent with the data on heat flows and seismotomographic observations. This provides grounds for the assumption that the low-temperature anomalies (thermal roots of continents) penetrate down to a depth of 300 km. The analysis of the sensitivity of seismic velocity and density to the variations in temperature, pressure, and chemical and phase composition of petrological models shows that recognition of fine differences in chemical composition of the lithospheric rocks by seismic methods is impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afonso, J.C., Fernandez, M., Ranalli, G., et al., Integrated Geophysical-Petrological Modeling of the Lithosphere and Sublithospheric Upper Mantle: Methodology and Applications, Geochem. Geophys. Geosyst, 2008, vol. 9, no. 5, doi: 10.1029/2007GC001834.

  • Anderson, D.L., Theory of the Earth, 1989, Boston: Black-well Sci. Publ.

    Google Scholar 

  • Artemieva, I.M., The Continental Lithosphere: Reconciling Thermal, Seismic, and Petrologic Data, Lithos, 2009, vol. 109, pp. 23–46.

    Article  Google Scholar 

  • Artemieva, I.M. and Mooney W.D., Thermal Thickness and Evolution of Precambrian Lithosphere: A Global Study, J. Geophys. Res., 2001, vol. 106, pp. 16387–16414.

    Article  Google Scholar 

  • Ashchepkov, I.V., Empirical Garnet Thermobarometer for Mantle Peridotites, Geol. Geofiz., 2006, vol. 47, no. 10, pp. 1075–1089.

    Google Scholar 

  • Bayuk, E.I., Volarovich, M.P., and Levitova, F.M., Uprugaya anizotropiya gornykh porod pri vysokikh davleniyakh (Elastic Anisotropy of Rocks under High Pressures), Moscow: Nauka, 1982.

    Google Scholar 

  • Berry, A.J., Danyushevsky, L.V., O’Neill H.St.C., et al., Oxidation State of Iron in Komatiitic Melt Inclusions Indicates Hot Archaean Mantle, Nature, 2008, vol. 455, pp. 960–963.

    Article  Google Scholar 

  • Bijwaard, H., Spakman, W., and Engdahl, E.R. Closing Gap between Regional and Global Travel Time Tomography, Geophys. Res., 1998, vol. 103, pp. 30055–30078.

    Article  Google Scholar 

  • Boyd, F.R., High- and Low-Temperature Garnet Peridotite Xenoliths and Their Possible Relation to the Lithosphere-Asthenosphere Boundary Beneath Southern Africa, in Mantle Xenoliths, Nixon P.H. (Ed.), New York: Wiley, 1987.

    Google Scholar 

  • Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., et al., Composition of the Siberian Cratonic Mantle: Evidence from Udachnaya Peridotite Xenoliths, Contrib. Mineral. Petrol., 1997, vol. 128, pp. 228–246.

    Article  Google Scholar 

  • Bushenkova N., Tychkov S., and Koulakov I., Tomography on PP-P Waves and Its Application for Investigation of the Upper Mantle in Central Siberia, Tectonophys., 2002, vol. 358, pp. 57–76.

    Article  Google Scholar 

  • Cammarano, F., Goes, S., Vacher, P., and Giardini, D., Inferring Upper-Mantle Temperatures from Seismic Velocities, Phys. Earth Planet. Inter., 2003, vol. 138, pp. 197–222.

    Article  Google Scholar 

  • Cammarano, F., Romanowicz, B., Stixrude, L., et al., Inferring the Thermochemical Structure of the Upper Mantle from Seismic Data, Geophys. J. Int., 2009, vol. 179, pp. 1169–1185.

    Article  Google Scholar 

  • Deen, T. J., Griffin, W.L., Begg, G., et al., Thermal and Compositional Structure of the Subcontinental Lithospheric Mantle: Derivation from Shear Wave Seismic Tomography, Geochem. Geophys. Geosyst., 2006, vol. 7, Q07003, doi: 10.1029/2005GC001120.

    Article  Google Scholar 

  • Duchkov, A.D. and Sokolova, L.S., The Thermal Structure of the Lithosphere beneath the Siberian Platform, Geol. Geofiz, 1997, vol. 38, no. 2, pp. 494–503.

    Google Scholar 

  • Yegorkin, A.V., Study of the Mantle on Super-Long Geotraverses, Fiz. Zemli, 1999, nos. 7–8, pp. 114–130 [Izv. Phys. Earth (Engl. Transl.), 1999, vol. 35, nos. 7–8, pp. 630–645].

  • Yegorkin, A.V., The Upper Mantle Structure beneath the Daldyn-Alakit Kimberlite Field According to Seismic Records of Nuclear Explosions, Geologiya Rudn. Mestorozhdenii, 2001, vol. 43, no. 1, pp. 24–37 [Geol. Ore Deposits (Engl. Transl.), 2001, vol. 43, pp. 19–32].

    Google Scholar 

  • Yegorkin, A.V., Mantle Structure of the Siberian Platform, Fiz. Zemli, 2004, no. 5, pp. 37–46 [Izv. Phys. Earth (Engl. Transl.), 2004, vol. 35, nos. 7–8, pp. 385–394].

  • Fabrichnaya, O.B. and Kuskov, O.L., Constitution of the Moon: 1. Assessment of Thermodynamic Properties and Reliability of Phase Relation Calculations in the FeO-MgO-Al2O3-SiO2 System, Phys. Earth Planet. Inter., 1994, vol. 83, pp. 175–196.

    Article  Google Scholar 

  • Glebovitskii, V.A., Nikitina, L.P., and Khil’tova, V.Ya., The Thermal State of the Mantle Underlying Precambrian and Phanerozoic Structures: Evidence from Garnet-Orthopyroxene Thermobarometry of Garnet Peridotite Xenoliths in Kimberlites and Alkali Basalts, Fiz. Zemli, 2001, no. 3, pp. 3–25 [Izv. Phys. Earth (Engl. Transl.), 2001, vol. 37, no. 3, pp. 193–214].

  • Glebovitskii, V.A., Nikitina, L.P., Vrevskii, A.B., Pushkarev, Yu.D., Babushkina, M.S., and Goncharov, A.G., The Nature of Chemical Heterogeneity in the Continental Lithospheric Mantle, Geokhimiya, 2009, no. 9, pp. 910–936 [Geochem. Int. (Engl. Transl.), no. 9, pp. 857–881].

  • Grachev, A.F. and Dobrzhinetskaya, L.F., Structural Anisotropy of Mantle Xenoliths from Neogene Volvanics of Central Europe and Its Significance for Azimuthal Seismic Anisotropy of the Lithosphere, in Glubinnye ksenolity i stroenie litosfery (Deep-seated Xenoliths and Structure of the Lithosphere), Moscow: Nauka, 1987.

    Google Scholar 

  • Grégoire, M., Bell, D.R, and Le Roex, A.P., Garnet Lherzolites from the Kaapvaal Craton (South Africa): Trace Element Evidence for a Metasomatic History, J. Petrol., 2003, vol. 44, pp. 629–657.

    Article  Google Scholar 

  • Griffin, W.L., Kaminsky, F.V., Ryan, C.G., et al., Thermal State and Composition of the Lithospheric Mantle beneath the Daldyn Kimberlite Kield, Yakutia, Tectonophys., 1996, vol. 262, pp. 19–33.

    Article  Google Scholar 

  • Griffin, W. L., O’Reilly, S.Y., Afonso, J.C., and Begg, G.C., The Composition and Evolution of Lithospheric Mantle: A Reevaluation and Its Tectonic Iimplications, J. Petrol., 2009, vol. 50, pp. 1185–1204.

    Article  Google Scholar 

  • Gung, Y., Panning, M., and Romanowicz, B., Global Anisotropy and the Thickness of Continents, Nature, 2003, vol. 422, pp. 707–711.

    Article  Google Scholar 

  • Hirschmann, M.M., Mantle Solidus: Experimental Constrain and the Effects of Peridotite Composition, Geochem. Geophys. Geosyst., 2000, vol. 1, no. 2000GC000070.

  • James, D.E., Boyd, F.R., Schutt, D., et al., Xenolith Constraints on Seismic Velocities in the Upper Mantle beneath Southern Africa, Geochem. Geophys. Geosyst., 2004, vol. 5, doi: 10.1029/2003GC000551.

  • James, D.E., Fouch, M.J., VanDecar, J.C., and van der Lee, S., Tectospheric Structure beneath Southern Africa, Geophys. Res. Lett., 2001, vol. 28, pp. 2485–2488.

    Article  Google Scholar 

  • Jones, A.G., Evans, R.L., and Eaton, D.W., Velocity-Conductivity Relationships for Mantle Mineral Assemblages in Archean Cratonic Lithosphere Based on a Review of Laboratory Data and Hashin-Shtrikman Extremal Bounds, Lithos., 2009, vol. 109, pp. 131–143.

    Article  Google Scholar 

  • Jordan, T.H., Composition and Development of the Continental Tectosphere, Nature, 1978, vol. 274, pp. 544–548.

    Article  Google Scholar 

  • Karato, S., Importance of Anelasticity in the Interpretation of Seismic Tomography, Geophys. Res. Lett., 1993, vol. 20, pp. 1623–1626.

    Article  Google Scholar 

  • Kennett, B.L.N. and Engdahl, E.R., Traveltimes for Global Earthquake Location and Phase Identification, Geophys. J. Int., 1991, vol. 105, pp. 429–465.

    Article  Google Scholar 

  • Khan, A., Connolly, J.A.D., and Taylor, S.R., Inversion of Seismic and Geodetic Data for the Major Element Chemistry and Temperature of the Earth’s Mantle, J. Geophys. Res., 2008, vol. 113, B09308, doi:10.1029/2007JB005239.

    Article  Google Scholar 

  • Khan, A., Connolly, J.A.D., Maclennan, J., and Mosegaard, K., Joint Inversion of Seismic and Gravity Data for Lunar Composition and Thermal State, Geophys. J. Int., 2007, vol. 168, pp. 243–258.

    Article  Google Scholar 

  • Kobussen, A.F., Christensen, N.I., and Thybo, H., Constraints on Seismic Velocity Anomalies beneath the Siberian Craton from Xenoliths and Petrophysics, Tectonophys., 2006, vol. 425, pp. 123–135.

    Article  Google Scholar 

  • Komiya, T., Maruyama, S., Hirata, T., and Yurimoto, H., Petrology and Geochemistry of MORB and OIB in the Mid-Archean North Pole Region, Pilbara Craton, Western Australia: Implications for the Composition and Temperature of the Upper Mantle at 3.5 Ga, Int. Geol. Rev., 2002, vol. 44, pp. 988–1016.

    Article  Google Scholar 

  • Kronrod, V.A. and Kuskov, O.L., Determination of Temperature and Bulk Composition of the Upper Mantle from Seismic Data, Geokhimiya, 1996, no. 1, pp. 80–85 [Geochem. Int. (Engl. Transl.), 1996, no. 1, pp. 72–76].

  • Kronrod, V.A. and Kuskov, O.L., Determining Heat Flows and Radiogenic Heat Generation in the Crust and Lithosphere Based on Seismic Data and Surface Heat Flows, Geokhimiya, 2006, no. 10, pp. 1035–1040 [Geochem. Int. (Engl. Transl.), 2006, no. 10, pp. 1035–1040].

  • Kronrod, V.A. and Kuskov, O.L., Modeling of the Thermal Structure of Continental Lithosphere, Fiz. Zemli, 2007, no. 1, pp. 96–107 [Izv. Phys. Earth (Engl. Transl.), 2007, vol. 43, no. 1, pp. 91–101].

  • Kuskov, O.L., Constitution of the Moon: 4. Composition of the Mantle from Seismic Data, Phys. Earth Planet. Inter., 1997, vol. 102, pp. 239–257.

    Article  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Basic Thermodynamic Models of the Earth’s Upper Mantle: Limits of Changes in Chemical Composition and Temperature, Geokhimiya, 1994, no. 10, pp. 1383–1397.

  • Kuskov, O.L. and Kronrod, V.A., Constitution of the Moon: 5. Constraints on Composition, Density, Temperature, and Radius of a Core, Phys. Earth Planet. Inter., 1998, vol. 107, pp. 285–306.

    Article  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Core Sizes and Internal Structure of the Earth’s and Jupiter’s Satellites, Icarus, 2001, vol. 151, pp. 204–227.

    Article  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Determining the Temperature of the Earth’s Continental Upper Mantle from Geochemical and Seismic Data, Geokhimiya, 2006, no. 3, pp. 267–283 [Geochem. Int. (Engl. Transl.), no. 3, pp. 232–248].

  • Kuskov, O.L. and Kronrod, V.A., Composition, Temperature, and Thickness of the Lithosphere beneath the Archean Kaapvaal Craton, Fiz. Zemli, 2007, no. 1, pp. 45–66 [Izv. Phys. Earth (Engl. Transl.), 2007, vol. 43, no. 1, pp. 42–62].

  • Kuskov, O.L. and Kronrod, V.A., Geochemical Constraints on the Model of the Composition and Thermal Conditions of the Moon according to Seismic Data, Fiz. Zemli, 2009, no. 9, pp. 25–40 [Izv. Phys. Earth (Engl. Transl.), 2009, vol. 45, no. 9, pp. 753–768].

  • Kuskov, O.L., Kronrod, V.A., and Annersten, H., Inferring Upper-Mantle Temperatures from Seismic and Geochemical Constraints: Implications for Kaapvaal Craton, Earth Planet. Sci. Lett., 2006, vol. 244, pp. 133–154.

    Article  Google Scholar 

  • Kuskov, O.L., Kronrod, V.A., and Hood, L.L., Geochemical Constraints on the Seismic Properties of the Lunar Mantle, Phys. Earth Planet. Inter., 2002, vol. 134, pp. 175–189.

    Article  Google Scholar 

  • Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., Sistemy Yupitera i Saturna: formirovanie, sostav i vnutrennee stroenie krupnykh sputnikov (Jupiter and Saturn Systems: Formation, Composition, and Inner Structure of Large Satellites), Moscow: LKI, 2009.

    Google Scholar 

  • Lambert, R.St.J., Archean Thermal Regimes, Temperatures of the Crust and Upper Mantle, and Stage Model of the Earth’s Evolution, in Early History of the Earth, Ed. by Windley, B.M., N.Y.: Wiley, 1976; Moscow: Mir, 1980.

    Google Scholar 

  • Lebedev, S., Boonen, J., and Trampert, J., Seismic Structure of Precambrian Lithosphere: New Constraints from Broad-band Surface-Wave Dispersion, Lithos, 2009, vol. 109, pp. 96–111.

    Article  Google Scholar 

  • Lognonné, P., Planetary Seismology, Annu. Rev. Earth Planet. Sci., 2005, vol. 33, pp. 571–604.

    Article  Google Scholar 

  • Long, C. and Christensen, N.I., Seismic Anisotropy of South African Upper Mantle Xenoliths Earth Planet. Sci. Lett., 2000, vol. 179, pp. 551–565.

    Article  Google Scholar 

  • Mainprice, D., Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective, Treatise on Geophysics, 2007, vol. 2, pp. 437–491.

    Article  Google Scholar 

  • Manakov, A.V., Models of the Upper Mnatle Composition for the Yakutsk Kimberlite Province, Vestn. Voronezh. Univ., Geol., 2001, no. 11, pp. 46–54.

  • McDonough, W.F., Constraints on the Composition of the Continental Lithospheric Mantle, Earth Planet. Sci. Lett., 1990, vol. 101, pp. 1–18.

    Article  Google Scholar 

  • Michaut, C., Jaupart, C., and Bell, D.R., Transient Geotherms in Archean Continental Lithosphere: New Constraints on Thickness and Heat Production of the Subcontinental Lithospheric Mantle, J. Geophys. Res., 2007, vol. 112, B04408, doi: 10.1029/2006JB004464.

    Article  Google Scholar 

  • Montagner, J.-P. and Kennett, B.L. N., How to Reconcile Body-Wave and Normal-mode Reference Earth Models, Geophys. J. Int., 1996, vol. 125, pp. 229–248.

    Article  Google Scholar 

  • Moralev, V.M., Recent Models of the Archean Lithosphere Evolution, in Dinamika i evolyutsiya litosfery (Dynamics and Evolution of the Lithosphere, Moscow: Nauka, 1986, pp. 66–76.

    Google Scholar 

  • Nielsen, L., Thybo, H., and Yegorkin, A.V., Implications of Seismic Scattering below the 8 Discontinuity along PNE Profile Kraton, Tectonophys., 2002, vol. 358, pp. 135–150.

    Article  Google Scholar 

  • Nikitin, A.N., Ivankina, T.I., Burilichev, D.E., et al., Anisotropy and Texture of Olivin-Bearing Mantle Rocks at High Pressure, Fiz. Zemli, 2001, no. 1, pp. 64–78 [Izv. Phys. Earth (Engl. Transl.), 2001, vol. 37, no. 1, pp. 59–72].

  • Oreshin, S., Vinnik, L., Makeyeva, et al., Combined Analysis of SKS Splitting and Regional P Traveltimes in Siberia, Geophys. J. Int., 2002, vol. 151, pp. 393–402.

    Article  Google Scholar 

  • Pavlenkova, N.I., Structure of the Upper Mnatle beneath the Siberian Platform from Data Obtained along Superlong Seismic Profiles, Geol. Geofiz., 2006, vol. 47, no. 5, pp. 630–645.

    Google Scholar 

  • Pavlenkova, G.A. and Pavlenkova, N.I., Upper Mantle Structure of the Northern Eurasia from Peaceful Nuclear Explosion Data, Tectonophys., 2006, vol. 416, pp. 33–52.

    Article  Google Scholar 

  • Pearson, D.G. and Wittig, N., Formation of Archaean Continental Lthosphere and Its Diamonds: the Root of the Problem, J. Geol. Soc., 2008, vol. 165, pp. 895–914.

    Article  Google Scholar 

  • Pollack, H. N. and Chapman, D. S., On the Regional Variation of Heat Flow, Geotherms and Lithosphere Thickness, Tectonophys., 1977, vol. 38, pp. 279–296.

    Article  Google Scholar 

  • Poupinet, G., Arndt N., and Vacher, P., Seismic Tomography beneath Stable Tectonic Regions and the Origin and Composition of the Continental Lithospheric Mantle, Earth Planet. Sci. Lett., 2003, vol. 212, pp. 89–101.

    Article  Google Scholar 

  • Priestley, K., Debayle, E., McKenzie, D., and Pilidou, S., Upper Mantle Structure of Eastern Asia from Multimode Surface Waveform Tomography, J. Geophys. Res., 2006, vol. 111, B10304, doi:10.1029/2005JB004082.

    Article  Google Scholar 

  • Rosen, O.M., Manakov, A.V., and Zinchuk, N.N., Sibirskii kraton: formirovanie, almazonosnost’ (The Siberian Craton: Formation, Diamond Content, Moscow: Nauchnyi Mir, 2006.

    Google Scholar 

  • Rosen, O.M., Solov’ev, A.V., and Zhuravlev, D.Z., Thermal Evolution of the Northeastern Siberian Platform in the Light of Apatite Fission-Track Dating of the Deep Drill Core, Fiz. Zemli, 2009, no. 10, pp. 79–96 [Izv. Phys. Earth (Engl. Transl.), 2009, vol. 45, no. 10, pp. 914–931].

  • Rudnick, R.L., McDonough, W.F., and O’Connell, R.J., Thermal Structure, Thickness and Composition of Continental Lithosphere, Chem. Geol., 1998, vol. 145, pp. 395–411.

    Article  Google Scholar 

  • Shapiro, N.M. and Ritzwoller, M.H., Thermodynamic Constraints on Seismic Inversions, Geophys. J. Int., 2004, vol. V. 157. P. 1175–1188.

    Article  Google Scholar 

  • Shimizu, N., Pokhilenko, N.P., Boyd, F.R., and Pirson, D.G., Geochemical Characteristics of Mantle Xenoliths from the Udachnaya Kimberlite Pipe, Geol. Geofiz., 1997, vol. 38, pp. 194–205.

    Google Scholar 

  • Sobolev, N.V., Glubinnye vklyucheniya v kimberlitah i problema sostava verkhnei mantii (Deep-seated Inclusions in Kimberlites and Composition of the Upper Mantle), Novosibirsk: Nauka, 1974.

    Google Scholar 

  • Sobolev, S.V., Zeyen, H., Stoll, G., et al., Upper Mantle Temperatures from Teleseismic Tomography of French Massif Central Including Effects of Composition, Mineral Reactions, Anharmonicity, Anelasticity and Partial Melt, Earth Planet. Sci. Lett., 1996, vol. 139, pp. 147–163.

    Article  Google Scholar 

  • Solov’eva, L.V., Vladimirov, B.M., Dneprovskaya, L.V., et al., Kimberlity i kimberlitopodobnye porody. Veschestvo verkhnei mantii pod drevnimi platformami (Kimberlites and Kimberlite-like Rocks. The Composition of the Upper Mantle beneath Ancient Platforms), Novosibirsk: Nauka, 1994.

    Google Scholar 

  • Suvorov, V.D., Melnik, E.A., Thybo, H., et al., Seismic Velocity Model of the Crust and Uppermost Mantle around the Mirnyi Kimberlite Field in Siberia, Tectonophys., 2006, vol. 420, pp. 49–73.

    Article  Google Scholar 

  • Tsvetcova, T., Shumlyanskaya, L., Zaiets, L., and Bugaienko, I., Seismic Tomography of Eurasia, in Int. Conf. Geodynam. Phenomena: From Field, Observational, Seismol. Rheolog. Perspectives, Suzdal: 2009.

  • Ukhanov, A.V., Ryabchikov, I.D., and Khar’kiv, A.D., Litosfernaya mantiya Yakutskoi kimberlitovoi provintsii (The Lithospheric Mantle beneath the Yakutsk Kimberlite Province), Moscow: Nauka, 1988.

    Google Scholar 

  • Van’yan, L.L., Fluids in the Earth’s Crust and Asthenosphere According to Electromagnetic Data, in Dinamika i evolyutsiya litosfery (Dynamics and Evolution of the Lithosphere), Moscow: Nauka, 1986, pp. 146–151.

    Google Scholar 

  • Yanovskaya, T.B. and Kozhevnikov, V.M., Anisotropy of the Upper Mantle beneath the Asian Continent from Group Wave Love and Raleigh Velocities, Geol. Geofiz., 2006, vol. 47, pp. 622–629.

    Google Scholar 

  • Zhao, M., Langston, C.A., Nyblade, A.A., and Owens, T.J., Upper Mantle Velocity Structure beneath Southern Africa from Modeling Regional Seismic Data, J. Geophys. Res., 1999, vol. 104B, pp. 4783–4794.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Kuskov.

Additional information

Original Russian Text © O.L. Kuskov, V.A. Kronrod, A.A. Prokof’ev, 2011, published in Fizika Zemli, 2011, No. 3, pp. 3–23.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuskov, O.L., Kronrod, V.A. & Prokof’ev, A.A. Thermal structure and thickness of the lithospheric mantle underlying the Siberian Craton from the kraton and kimberlit superlong seismic profiles. Izv., Phys. Solid Earth 47, 155–175 (2011). https://doi.org/10.1134/S1069351310111011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351310111011

Keywords

Navigation