Skip to main content
Log in

9-Chloro-5,9-dienoic and Other Fatty Acids from Marine Sponge Penares sp.

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: Structural analysis of the fatty acids and their ethyl esters from the extract of sponge Penares sp. (South China Sea). Methods: Separation by high-performance liquid chromatography. Analysis by gas chromatography-mass spectrometry using pyrrolidine, 4,4-dimethyloxazoline, dimethyl disulfide, and hydrogenated derivatives. Analysis by 1Н and 13С NMR spectroscopy. Results and Discussion: 71 acids with a chain length from C12 to C28 were found, including 12 new compounds, i.e., (5Z,9Z)-9-chloro-24-methy-5,9-pentacosadienoic, (5Z,9Z)-9-chloro-25-methyl-5,9-hexacosadienoic, (5Z,9Z)-9-chloro-24-methyl-5,9-hexacosadienoic, (5Z,9Z)-9-chloro-25-methyl-5,9-heptacosadienoic, 6-chloro-20-methyl-4-heneicosenoic, 6-chloro-19-methyl4-heneicosenoic, 6-chloro-20-methyl-4-docosenoic, cis-17,18-methylene-tetracosanoic, 16,21-dimethyldocosanoic, 18,23-dimethyltetracosanoic, 16,18,22-trimethyltricosanoic, and 18,20,24-trimethylpentacosanoic acids. Conclusions: The characteristic features of the fatty acid mixture from Penares sp. were a high level of constituents with monomethylated chains (over 50%) and the nearly total substitution of common demospongic acids for their previously unknown chloro derivatives, (5Z,9Z)-9-chloro-5,9-dienoic acids, due to, presumably, the activity of sponge-associated microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Dembitsky, V.M., Rezanka, T., and Srebnik, M., Chem. Phys. Lipids, 2003, vol. 123, pp. 117‒155. https://doi.org/10.1016/S0009-3084(03)00020-3

    Article  CAS  PubMed  Google Scholar 

  2. Rodkina, S.A., Russ. J. Mar. Biol., 2005, vol. 31, pp. S49–S60. https://doi.org/10.1007/s11179-006-0015-3

  3. Bergé, J.-P. and Barnathan, G., Marine Biotechnology I. Advances in Biochemical Engineering/Biotechnology, Ulber, R. and Le Gal, Y., Eds., Berlin, Heidelberg: Springer, 2005, vol. 96, pp. 49–125. https://doi.org/10.1007/b135782

  4. Řezanka, T. and Sigler, K., Prog. Lipid Res., 2009, vol. 48, pp. 206‒238. https://doi.org/10.1016/j.plipres.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  5. Manjari Mishra, P., Sree, A., and Panda, P.K., Springer Handbook of Marine Biotechnology, Kim, S.K., Ed., Berlin, Heidelberg: Springer, 2015, pp. 851–868. https://doi.org/10.1007/978-3-642-53971-8_36

  6. Kornprobst, J.-M. and Barnathan, G., Mar. Drugs, 2010, vol. 8, pp. 2569‒2577. https://doi.org/10.3390/md8102569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dembitsky, V.M. and Srebnik, M., Prog. Lipid Res., 2002, vol. 41, pp. 315‒367. https://doi.org/10.1016/S0163-7827(02)00003-6

    Article  CAS  PubMed  Google Scholar 

  8. Hwang, B.S., Lee, K., Yang, C., Jeong, E.J., and Rho, J.-R., J. Nat. Prod., 2013, vol. 76, pp. 2355‒2359. https://doi.org/10.1021/np400793r

    Article  CAS  PubMed  Google Scholar 

  9. Lyakhova, E.G., Kolesnikova, S.A., Kalinovsky, A.I., Dmitrenok, P.S., Nam, N.H., and Stonik, V.A., Steroids, 2015, vol. 96, pp. 37–43. https://doi.org/10.1016/j.steroids.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  10. Lyakhova, E.G., Kolesnikova, S.A., Kalinovsky, A.I., Afiyatullov, Sh.Sh., Dyshlovoy, S.A., Krasokhin, V.B., Minh, Ch.V., and Stonik, V.A., Tetrahedron Lett., 2012, vol. 53, pp. 6119‒6122. https://doi.org/10.1016/j.tetlet.2012.08.148

    Article  CAS  Google Scholar 

  11. Kobayashi, J., Cheng, J.-F., Ishibashi, M., Wälchli, M.R., Yamamura, Sh., and Ohizumi, Y., J. Chem. Soc., Perkin Trans. 1, 1991, pp. 1135–1137. https://doi.org/10.1039/P19910001135

  12. Alvi, Kh.A., Jaspars, M., Crews, Ph., Strulovici, B., and Oto, E., Bioorg. Med. Chem. Lett., 1994, vol. 4, pp. 2447‒2450. https://doi.org/10.1016/S0960-894X(01)80407-8

    Article  CAS  Google Scholar 

  13. Nakao, Y., Maki, T., Matsunaga, Sh., van Soest, R.W.M., and Fusetani, N., J. Nat. Prod., 2004, vol. 67, pp. 1346‒ 1350. https://doi.org/10.1021/np049939e

    Article  CAS  PubMed  Google Scholar 

  14. Takada, K., Uehara, T., Nakao, Y., Matsunaga, Sh., van Soest, R.W.M., and Fusetani, N., J. Am. Chem. Soc., 2004, vol. 126, pp. 187‒193. https://doi.org/10.1021/ja037368r

    Article  CAS  PubMed  Google Scholar 

  15. Fujita, M., Nakao, Y., Matsunaga, Sh., Seiki, M., Itoh, Y., van Soest, R.W.M., and Fusetani, N., Tetrahedron, 2001, vol. 57, pp. 1229‒1234. https://doi.org/10.1016/S0040-4020(00)01128-5

    Article  CAS  Google Scholar 

  16. Ushio-Sata, N., Matsunaga, Sh., Fusetani, N., Honda, K., and Yasumuro, K., Tetrahedron Lett., 1996, vol. 37, pp. 225‒228. https://doi.org/10.1016/0040-4039(95)02134-5

    Article  CAS  Google Scholar 

  17. Ando, H., Ueoka, R., Okada, Sh., Fujita, T., Iwashita, T., Imai, T., Yokoyama, T., Matsumoto, Y., van Soest, R.W.M., and Matsunaga, Sh., J. Nat. Prod., 2010, vol. 73, pp. 1947‒ 1950. https://doi.org/10.1021/np1003565

    Article  CAS  PubMed  Google Scholar 

  18. Bergquist, P.R., Lawson, M.P., Lavis, A., and Cambie, R.C., Biochem. Syst. Ecol., 1984, vol. 12, pp. 63–84. https://doi.org/10.1016/0305-1978(84)90012-7

    Article  CAS  Google Scholar 

  19. Lawson, M.P., Bergquist, P.R., and Cambie, R.C., Biochem. Syst. Ecol., 1984, vol. 12, pp. 375–393. https://doi.org/10.1016/0305-1978(84)90070-X

    Article  CAS  Google Scholar 

  20. Budzikevich, G., Djerasi, K., and Williams, D., Interpretation of Mass Spectra of Organic Compounds, Wolfson N.S., Ed., Moscow: Mir. 1966, pp. 323.

  21. The LipidWeb. Mass Spectrometry of Alkyl Esters. Ethyl Esters of Fatty Acids. https://www.lipidmaps.org/resources/lipidweb/index.php?page=ms/others/alkesters/index.htm

  22. The LipidWeb. Mass Spectra of Fatty Acid Alkyl EstersArchive. Ethyl Esters of Fatty Acids. https://www.lipidmaps.org/resources/lipidweb/index.php?page=ms/others/others-arch/index.htm

  23. The LipidWeb. Mass Spectrometry of Fatty Acid Pyrrolidides. Dienoic Fatty Acids. Part 2. Conjugated and Bis- and Polymethylene-Interrupted Dienes. https://www.lipidmaps.org/resources/lipidweb/index.php?page=ms/pyrrolidides/pyrrol-2db-2/index.htm

  24. The LipidWeb. Mass Spectrometry of DMOX Derivatives. Dienoic Fatty Acids. Part 2. Conjugated and Bis- and Polymethylene-Interrupted Dienes. https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/ms/dmox/dmox-2db-2/index.htm

  25. The LipidWeb. Mass Spectrometry of Fatty Acid Pyrrolidides. Saturated Branched-Chain Fatty Acids. https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/ms/pyrrolidides/pyrrol-sbr/index.htm

  26. The LipidWeb. Pyrrolidine Derivatives of Fatty Acids. Archive of Mass Spectra. https://www.lipidmaps.org/resources/lipidweb/index.php?page=ms/pyrrolidides/pyrrol-arch/index.htm

  27. Santalova, E.A. and Denisenko, V.A., Nat. Prod. Commun., 2017, vol. 12, pp. 1913–1916. https://doi.org/10.1177/1934578X1701201225

    Article  Google Scholar 

  28. Dérien, S., Klein, H., and Bruneau, Ch., Angew. Chem. Int. Ed. Engl., 2015, vol. 54, pp. 12112–12115. https://doi.org/10.1002/anie.201505144

    Article  CAS  PubMed  Google Scholar 

  29. Gunstone, F.D., Chem. Phys. Lipids, 1993, vol. 65, pp. 155–163. https://doi.org/10.1016/0009-3084(93)90049-9

    Article  CAS  Google Scholar 

  30. Akasaka, K., Shichijyukari, S., Meguro, H., and Ohrui, H., Biosci. Biotechnol. Biochem., 2002, vol. 66, pp. 1719–1722. https://doi.org/10.1271/bbb.66.1719

    Article  CAS  PubMed  Google Scholar 

  31. Santalova, E.A., Denisenko, V.A., and Dmitrenok, P.S., Molecules, 2020, vol. 25, p. 6047. https://doi.org/10.3390/molecules25246047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andersson, B.A., Prog. Chem. Fats Other Lipids, 1978, vol. 16, pp. 279–308. https://doi.org/10.1016/0079-6832(78)90048-4

    Article  CAS  PubMed  Google Scholar 

  33. Santalova, E.A. and Denisenko, V.A., Lipids, 2017, vol. 52, pp. 73–82. https://doi.org/10.1007/s11745-016-4214-1

    Article  CAS  PubMed  Google Scholar 

  34. Knothe, G., Lipids, 2006, vol. 41, pp. 393–396. https://doi.org/10.1007/s11745-006-5110-x

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, J.Y., Yu, Q.T., and Huang, Z.H., J. Mass Spectrom. Soc. Japan, 1987, vol. 35, pp. 23–30. https://doi.org/10.5702/massspec.35.23

    Article  CAS  Google Scholar 

  36. The LipidWeb. Mass Spectrometry of Dimethyloxazoline and Pyrrolidine Derivatives. Cyclic Fatty Acids. https://www.lipidmaps.org/resources/lipidweb/index.php?page=ms/dmox/dmox-cyclic/index.htm

  37. The LipidWeb. Mass Spectrometry of Methyl Esters. Saturated Branched-Chain Fatty Acids. https://www.lipidmaps.org/resources/lipidweb/index.php?page=ms/methesters/me-0dbbr/index.htm

  38. The LipidWeb. Unesterified (Free) Fatty Acids. https://www.lipidmaps.org/resources/lipidweb/index.php?page=lipids/simple/ffa/index.htm

  39. Thiel, V., Jenisch, A., Wörheide, G., Löwenberg, A., Reitner, J., and Michaelis, W., Org. Geochem., 1999, vol. 30, pp. 1–14. https://doi.org/10.1016/S0146-6380(98)00200-9

    Article  CAS  Google Scholar 

  40. The LipidWeb. Fatty Acids: Branched-Chain. https://www.lipidmaps.org/resources/lipidweb/index.php?page=lipids/fa-eic/fa-branc/index.htm

  41. The LipidWeb. Fatty Acids: Natural Cyclic. https://www.lipidmaps.org/resources/lipidweb/index.php?page=lipids/fa-eic/fa-cycl/index.htm

  42. Reiswig, H.M., Mar. Ecol., 1981, vol. 2, pp. 273–293. https://doi.org/10.1111/j.1439-0485.1981.tb00271.x

    Article  CAS  Google Scholar 

  43. Hedrick, D.B., Peacock, A.D., Long, Ph., and White, D.C., Lipids, 2008, vol. 43, pp. 843–851. https://doi.org/10.1007/s11745-008-3206-1

    Article  CAS  PubMed  Google Scholar 

  44. Fejzagić, A.V., Gebauer, J., Huwa, N., and Classen, T., Molecules, 2019, vol. 24, p. 4008. https://doi.org/10.3390/molecules24214008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bayer, K., Scheuermayer, M., Fieseler, L., and Hentschel, U., Mar. Biotechnol., 2013, vol. 15, pp. 63–72. https://doi.org/10.1007/s10126-012-9455-2

    Article  CAS  Google Scholar 

  46. Wang, J., Pang, X., Chen, Ch., Gao, Ch., Zhou, X., Liu, Y., and Luo, X., Chin. J. Chem., 2022, vol. 40, pp. 1729–1750. https://doi.org/10.1002/cjoc.202200064

    Article  CAS  Google Scholar 

  47. Vetter, W. and Walther, W., J. Chromatogr. А, 1990, vol. 513, pp. 405–407. https://doi.org/10.1016/S0021-9673(01)89466-8

    Article  CAS  Google Scholar 

  48. The LipidWeb. Mass Spectrometry of Methyl Esters. Derivatization of Double Bonds in Fatty Acids for Structural Analysis. https://www.lipidmaps.org/resources/lipidweb/index.php?page=ms/methesters/me-dbderivs/index.htm

  49. Santalova, E.A. and Svetashev, V.I., Nat. Prod. Commun., 2022, vol. 17, pp. 1–8. https://doi.org/10.1177/1934578X221131408

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Collective Facilities Center “The Far Eastern Center for Structural Molecular Research (NMR/MS) of G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of Russian Academy of Sciences” (NMR spectroscopy and mass spectrometry).

The authors thank O.P. Moiseenko, Ph.D. L.P. Ponomarenko, and E.G. Lyakhova for their assistance in the GC-MS analysis and the isolation of the FA ethyl esters, academician V.A. Stonik for discussion of some issues of this work, Ph.D. V.A. Denisenko and V.V. Isakov and operators N.V. Zvyagintsev and D.V. Denisenko for recording the NMR spectra.

Funding

The work was supported by the Russia Foundation for Basic Research (grant no. 20-03-00014).

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contributions to the writing of the article.

Corresponding author

Correspondence to Е. А. Santalova.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: FA, fatty acids; ECL, equivalent chain length; 1Н, 1Н-COSY, proton-proton correlation spectroscopy; НМВС, heteronuclear multiple bond correlation; HSQC, heteronuclear single-quantum coherence.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santalova, Е.А., Kolesnikova, S.А. 9-Chloro-5,9-dienoic and Other Fatty Acids from Marine Sponge Penares sp.. Russ J Bioorg Chem 50, 418–431 (2024). https://doi.org/10.1134/S1068162024020249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024020249

Keywords:

Navigation