Skip to main content
Log in

Chemical Compositions of Houttuynia cordata Thunb. Volatile Oil and Its Analogues Attenuate Staphylococcus aureus Virulence by Targeting α-Hemolysin

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Houttuynia cordata Thunb. is a medicinal and edible plant that has been used to treat phlegm, asthma, cough, carbuncle, swelling, and sore in China for thousands of years. Many previous studies have reported the chemical compositions and pharmacological acivities of hydrodistillation extracted Houttuynia volatile oil. However, no scientific studies on the inhibition activity against virulence factors of Staphylococcus aureus (S. aureus) have been published. So this article analyze the chemical compositions of Houttuynia volatile oil, and evaluate the anti-α-hemolysin (Hla) activity of Houttuynia volatile oil, its three compositions (nonanol, α-terpineol, 4-terpineol) and eleven analogues. In addition, inhibition activity of three compositions to the A549 cells infection of S. aureus was evaluated in vitro. The results is thirty-four ion chromatographic peaks with matching degree ≥90% were identified, and main chemical compositions of Houttuynia volatile oil were β-myrcene (24.48%) and β-phellandrene (11.28%). The MIC of lauraldehyde against S. aureus ATCC 29213 was found to be 8 μg/mL, and houttuynin showed the strongest inhibition activity against the six S. aureus strains with the MIC of 64 or 128 μg/mL. Besides, growth curve analysis revealed the non-bactericidal activity of nonanol, α-terpilenol, and 4-terpineol at sub-MIC. The result of anti-virulence study demonstrated that dodecanol, undecanol, and decanol showed the strongest anti-Hla activity by significantly inhibiting hemolysis of rabbit blood. Nonanol, α-terpilenol, and 4-terpineol can obviously protect A549 cells from α-Hla-mediated injury at 8, 16, and 32 μg/mL in vitro, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bhakdi, S. and Tranum-Jensen, J., Microbiol. Rev., 1991, vol. 55, pp. 733–751. https://doi.org/10.1128/mr.55.4.733-751.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dajcs, J.J., Thibodeaux, B.A., Girgis, D.O., and O’Callaghan, R.J., DNA Cell Biol., 2002, vol. 21, pp. 375–382. https://doi.org/10.1089/10445490260099656

    Article  CAS  PubMed  Google Scholar 

  3. Parish, H.J. and Clark, W., J. Pathol. Bacteriol., 2005, vol. 35, pp. 251–258. https://doi.org/10.1002/path.1700350211

    Article  Google Scholar 

  4. Rogolsky, M., Microbiol. Rev., 1979, vol. 43, pp. 320–360. https://doi.org/10.1007/BF02013529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khodaverdian, V., Pesho, M., Truitt, B., Bollinger, L., Patel, P., Nithianantham, S., Yu, G., Delaney, E., Jankowsky, E. and Shoham, M., Antimicrob. Agents Chemother., 2013, vol. 57, pp. 3645–3652. https://doi.org/10.1128/AAC.00269-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, Z., Li, K., Pan, T., Liu, J., Li, B., Li, C., Wang, S., Diao, Y., and Liu, X., J. Ethnopharmacol., 2019, vol. 239, p. 111909. https://doi.org/10.1016/j.jep.2019.111909

    Article  CAS  PubMed  Google Scholar 

  7. Xuewen, H., Ping, O., Zhongwei, Y., Zhongqiong, Y., Hualin, F., Juchun, L., Changliang, H., Gang, S., Zhixiang, Y. and Xu, S., World J. Microbiol. Biotechnol., 2018, vol. 34, p. 64. https://doi.org/10.1007/s11274-018-2446-3

    Article  CAS  PubMed  Google Scholar 

  8. Yan, C., Tangjuan, L., Ke, W., Changchun, H., Shuangqi, C., Yingying, H., Zhongye, D., Hong, H., Jinliang, K., and Yiqiang, C., PLoS One, 2016, vol. 11, p. e0153468. https://doi.org/10.1371/journal.pone.0153468

    Article  CAS  Google Scholar 

  9. Tang, F., Li, L., Meng, X.-M., Li, B., Wang, C.-Q., Wang, S.-Q., Wang, T.-W., and Tian, Y.-M., Microb. Pathog., 2018, vol. 127, pp. 85–90. https://doi.org/10.1016/j.micpath.2018.11.027

    Article  CAS  PubMed  Google Scholar 

  10. Bing, Z., Zihao, T., Xianhe, L., Gejin, L., Xuming, D., Xiaodi, N., and Jianfeng, W., Front. Microbiol., 2017, vol. 8, pp. 1715. https://doi.org/10.3389/fmicb.2017.01715

    Article  Google Scholar 

  11. Silva, L.N., Hora, G., Soares, T.A., Bojer, M.S., Ingmer, H., Macedo, A.J., and Trentin, D.S., Scientific Reports, 2017, vol. 7, p. 2823. https://doi.org/10.1038/s41598-017-02712-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lakshmi, S.A., Bhaskar, J.P., Krishnan, V., Sethupathy, S., and Pandian, S.K., J. Biotechnol., 2020, vol. 317. https://doi.org/10.1016/j.jbiotec.2020.04.014

  13. Commission, C.P., Beijing: People’s Medical Publishing House, 2015, vol. 04, pp. 132–135.

  14. Yang, J., Chen, W.Y., Fu, Y., Yang, T., Luo, X.D., Wang, Y.H., and Wang, Y.H., J. Ethnopharmacol., 2020, vol. 249, p. 112430. https://doi.org/10.1016/j.jep.2019.112430

    Article  CAS  PubMed  Google Scholar 

  15. Laloo, D. and Hemalatha, S., Pharmacogn. Rev., 2011, vol. 5, no. 10, p. 147. https://doi.org/10.4103/0973-7847.91108

  16. Kim, G.S., Kim, D.H., Lim, J.J., Lee, J.J., Han, D.Y., Lee, W.M., Jung, W.C., Min, W.G., Won, C.G., and Rhee, M.H., Biol. Pharm. Bull., 2008, vol. 31, p. 2012. https://doi.org/10.1248/bpb.31.2012

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, B.H., Chan, Y.W., Chan, C.L., Lin, H.Q., Han, X.Q., Zhou, X., Wan, C.C., Wang, Y.F., Leung, P.C., Fung, P.K., and Polym, C., Carbohydr. Polym., 2014, vol. 69, pp. 244–249. https://doi.org/10.1016/j.carbpol.2013.12.048

    Article  CAS  Google Scholar 

  18. Lau, K.M., Lee, K.M., Koon, C.M., Cheung, S.F., Lau, C.P., Ho, H.M., Lee, Y.H., Au, W.N., Cheng, H.K., and Lau, B.S., J. Ethnopharmacol., 2008, vol. 118, pp. 79–85. https://doi.org/10.1016/j.jep.2008.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu, H., Lu, X., Ling, L., Li, H., Ou, Y., Shi, X., Lu, Y., Zhang, Y., and Chen, D., J. Ethnopharmacol., 2018, vol. 28, pp. 28–33. https://doi.org/10.1016/j.jep.2018.02.016

    Article  CAS  Google Scholar 

  20. Probstle, A. and Bauer, R., Planta Med., 1992, vol. 58, pp. 568–569. https://doi.org/10.1055/s-2006-961554

    Article  CAS  PubMed  Google Scholar 

  21. Li, W., Ping, Z., Zhang, Y., and He, L., J. Ethnopharmacol., 2011, vol. 133, pp. 922–927. https://doi.org/10.1016/j.jep.2010.10.048

    Article  PubMed  Google Scholar 

  22. Li, G.Z., Chai, O.H., Lee, M.S., Han, E.H., Kim, H.T., and Song, C.H., Biol. Pharm. Bull., 2005, vol. 28, pp. 1864–1868. https://doi.org/10.1248/bpb.28.1864

    Article  CAS  PubMed  Google Scholar 

  23. Nuengchamnong, N., Krittasilp, K., and Ingkaninan, K., Food Chem., 2009, vol. 117, pp. 750–756. https://doi.org/10.1016/j.foodchem.2009.04.071

    Article  CAS  PubMed Central  Google Scholar 

  24. Li, W., Fan, T., Zhang, Y., Fan, T., Zhou, P., Niu, X., and He, L., Phytother. Res., 2013, vol. 27, pp. 1629–1639. https://doi.org/10.1002/ptr.4905

    Article  PubMed  Google Scholar 

  25. Ling, L., Lu, Y.A., Zhang, Y., Zhu, H., Tu, P.A., Li, H.B., and Chen, D., J. Phytomed., 2020, vol. 67. https://doi.org/10.1016/j.phymed.2019.153150

  26. Ma, Q., Wang, Z., Wei, R., Liu, W., and Huang, H., J. Ethnopharmacol., 2017, vol. 195, pp. 166–172. https://doi.org/10.1016/j.jep.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  27. Qing-Song, X. and Sai-Jin, W., Chem. Nat. Compd., 2015, vol. 51, pp. 359–360. https://doi.org/10.1007/s10600-015-1283-y

    Article  CAS  Google Scholar 

  28. Verma, R.S., Joshi, N., Padalia, R.C., Singh, V.R., Goswami, P., Kumar, A., Iqbal, H., Verma, R.K., Chanda, D., Chauhan, A., and Saikia, D., Chem. Biodiversity, 2017, vol. 14, p. e1700189. https://doi.org/10.1002/cbdv.201700189

    Article  CAS  Google Scholar 

  29. Jianmei, P., Wujun, D., Yuhuan, L., Xuejun, X., Zhihua, L., Huazhen, H., Lingmin, J., and Yuling, L., Molecules, 2017, vol. 22, p. 293. https://doi.org/10.3390/molecules22020293

    Article  CAS  Google Scholar 

  30. Lu, H.M., Liang, Y.Z., and Chen, S., J. Ethnopharmacol., 2006, vol. 105, pp. 436–440. https://doi.org/10.1016/j.jep.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  31. Qing-Song, X., Zhan, W., and Hua-Ru, Y., J. Anal. Sci., 2012, vol. 28, pp. 28–33.

    Google Scholar 

  32. Menestrina, G., J. Membr. Biol., 1986, vol. 90, pp. 177–190. https://doi.org/10.1007/BF01869935

    Article  CAS  PubMed  Google Scholar 

  33. Rasmussen, T.B. and Givskov, M., Microbiology, 2006, vol. 152, pp. 895–904. https://doi.org/10.1099/mic.0.28601-0

    Article  CAS  PubMed  Google Scholar 

  34. Wardenburg, J.B. and Schneewind, O., J. Exp. Med., 2008, vol. 205, pp. 287–294. https://doi.org/10.1084/jem.20072208

    Article  CAS  PubMed Central  Google Scholar 

  35. Martínez, O.F., Cardoso, M.H., Ribeiro, S.M., and Franco, O.L., Front. Cell Infect. Microbiol., 2019, vol. 9, p. 74. https://doi.org/10.3389/fcimb.2019.00074

  36. Zhou, L.L. and Yang, G.G., Chin. J. Chem., 2019, vol. 037, pp. 183–193.

    Article  CAS  Google Scholar 

  37. Balamurugan, P., Krishna, V.P., Bharath, D., Lavanya, R., Vairaprakash, P., and Princy, S.A., Front. Microbiol., 2017, vol. 8, p. 1290. https://doi.org/10.3389/fmicb.2017.01290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jóźwiak, M., Struga, M., Roszkowski, P., Filipek, A., Nowicka, G., and Olejarz, W., Biomed. Pharmacother., 2019, vol. 110, pp. 618–630. https://doi.org/10.1016/j.biopha.2018.12.005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Project of China (Grant no. 2017YFD0501400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Wu.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yingxue Yang, Wang, L., Zhao, B. et al. Chemical Compositions of Houttuynia cordata Thunb. Volatile Oil and Its Analogues Attenuate Staphylococcus aureus Virulence by Targeting α-Hemolysin. Russ J Bioorg Chem 48 (Suppl 1), S166–S177 (2022). https://doi.org/10.1134/S1068162023010284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023010284

Keywords:

Navigation