Skip to main content
Log in

Experimental Evaluation of 3-meta-Pyridine-1,2,4-Oxadiazole Derivative of Deoxycholic Acid as a Prototype of 5-α-Reductase Inhibitors in In Silico and In Vivo Models

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

It is considered that 5-α-reductase (5-AR) inhibitors are the most effective drugs for suppressing proliferative processes in prostate adenoma. They include two synthetic azasteroids, finasteride and dutasteride, which exert side effects in the form of sexual function disorders in the men undergoing long-term therapy. We have proposed deoxycholic acid as the starting compound for the synthesis of low-toxic 5-AR inhibitors. A target compound containing the 3-meta-pyridine-1,2,4-oxadiazole fragment was synthesized on its basis. Using molecular docking it has been demonstrated that the newly obtained agent is able to enter the 5-AR binding site through the formation of covalent adducts with NADP-H like finasteride does. Both ligands have comparable target binding energies (–20 and –15 kcal/mol for finasteride and the target compound, respectively). In the experiments on testosterone and sulpiride benign prostatic hyperplasia models it was shown that intragastric administration of the obtained deoxycholic acid derivative at a dose of 20 mg/kg and finasteride at a dose of 10 mg/kg to Wistar rats have similar prostate protection effects consisting in the reduction of proliferative processes in the glandular epithelium and prostate stroma of rats. The new agent is less toxic than finasteride: LD50 in CD-1 mice is >1500 mg/kg versus 1060 mg/kg in the case of finasteride. Based on the results the 3-meta-pyridine-1,2,4-oxadiazole derivative of deoxycholic acid can be considered as a promising candidate for preclinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Launer, B.M., McVary, K.T., Ricke, W.A., and Lloyd, G.L., BJU Int., 2021, vol. 127, pp. 722–728. https://doi.org/10.1111/bju.15286

    Article  PubMed  Google Scholar 

  2. Lim, K.B., Asian J. Urol., 2017, vol. 4, pp. 148–151. https://doi.org/10.1016/j.ajur.2017.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carson, C. and Rittmaster, R., Urology, 2003, vol. 61, pp. 2–7. https://doi.org/10.1016/S0090-4295(03)00045-1

    Article  PubMed  Google Scholar 

  4. Vickman, R.E., Franco, O.E., Moline, D.C., Vander Griend, D.J., Thumbikat, P., and Hayward, S.W., Asian J. Urol., 2020, vol. 7, pp. 191–202. https://doi.org/10.1016/j.ajur.2019.10.003

    Article  PubMed  Google Scholar 

  5. La Vignera, S., Condorelli, R.A., Russo, G.I., Morgia, G., and Calogero, A.E., Andrology, 2016, vol. 4, pp. 404–411. https://doi.org/10.1111/andr.12186

    Article  CAS  PubMed  Google Scholar 

  6. Thiruchelvam, N., Renal Urol. Surg. III, 2014, vol. 32, pp. 314–322. https://doi.org/10.1016/j.mpsur.2014.04.006

    Article  Google Scholar 

  7. Gravas, S., Cornu, J.N., Drake, M.J., Gacci, M., Gratzke, C., Herrmann, T.R.W., Madersbacher, S., Mamoulakis, C., and Tikkinen, K.A.O., Eur. Assoc. Urol., 2018. https://uroweb.org/wp-content/uploads/ EAU-Guidelines-on-the-Management-of-Non-neurogenic-Male-LUTS-2018-large-text.pdf.

  8. Kim, E.H., Brockman, J.A., and Andriole, G.L., Asian J. Urol., 2018, vol. 5, pp. 28–32. https://doi.org/10.1016/j.ajur.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  9. Sorokina, I.V., Popadyuk, I.I., Zhukova, N.A., Nizomov, S.A., Meshkova, Yu.V., Baev, D.S., Salomatina, O.V., Tolstikova, T.G., and Salakhutdinov, N.F., RF Patent no. 2750488C1, 2021.

  10. Huang, Y., Cui, J., Jia, L., Gan, C., Song, H., Zeng, C., and Zhou, A., Molecules, 2013, vol. 18, pp. 7436–7447. https://doi.org/10.3390/molecules18077436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verzele, D. and Madder, A., Org. Chem., 2007, pp. 1793–1797. https://doi.org/10.1002/ejoc.200600972

  12. Schrodinger Small Molecule Drug Discovery Suite, 2017. www.schrodinger.com.

  13. Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J.Y., Wang, L., Lupyan, D., Dahlgren, M.K., Knight, J.L., Kaus, J., Cerutti, D., Krilov, G., Jorgensen, W., Abel, R., and Friecner, R., J. Chem. Theory Comput., 2016, vol. 12, pp. 281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  PubMed  Google Scholar 

  14. Xiao, Q., Wang, L., Supekar, S., Shen, T., Liu, H., Ye, F., Huang, J., Fan, H., Wei, Z., and Zhang, C., Nat. Commun., 2020, vol. 11, pp. 1–10. https://doi.org/10.1038/S41467-020-19249-Z

    Article  Google Scholar 

  15. Makino, C., Watanabe, A., Deguchi, T., Shiozawa, H., Schreck, I., Rozehnal, V., Ishizuka, T., Watanabe, N., Ando, O., Murayama, N., and Yamazaki, H., Xenobiotica, 2019, vol. 49, pp. 961–969. https://doi.org/10.1080/00498254.2018.1514545

    Article  CAS  PubMed  Google Scholar 

  16. Tsalta, C.D., Madatian, A., Schubert, E.M., Xia, F., Hardesty, W., Deng, Y., Seymour, J.L., and Gorychi, P.D., Drug Metab. Dispos., 2011, vol. 39, pp. 1620–1632. https://doi.org/10.1124/dmd.110.036467

    Article  CAS  PubMed  Google Scholar 

  17. Makridakis, N., Akalu, A., and Reichardt, J.K.V., Oncogene, 2004, vol. 23, pp. 7399–7405. https://doi.org/10.1038/sj.onc.1207922

    Article  CAS  PubMed  Google Scholar 

  18. Li, J., Tian, Y., Guo, S., Gu, H., Yuan, Q., and Xie, X., PLoS One, 2018, vol. 13, pp. 1–13. https://doi.org/10.1371/journal.pone.0191469

    Article  CAS  Google Scholar 

  19. Mironov, A.N. and Bunyatyan, N.D., Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Chast’ pervaya (Guidelines for Conducting Preclinical Studies of Drugs. Part One), Moscow: Grif i K., 2012.

  20. Altavilla, D., Minutoli, L., Polito, F., Irrera, N., Arena, S., Magno, C., Rinaldi, M., Burnett, B.P., Squadrito, F., and Bitto, A., Br. J. Pharmacol., 2012, vol. 167, pp. 95–108. https://doi.org/10.1111/j.1476-5381.2012.01969.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsu, C.Y., Lin, Y.S., Weng, W.C., Panny, L., Chen, H.L., Tung, M.C., Ou, Y.C., Lin, C.C., and Yang, C.H., Life, 2021, vol. 11, p. 743. https://doi.org/10.3390/life11080743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Veeresh, BabuS.V., Veeresh, B., Patil, A.A., and Warke, Y.B., Eur. J. Pharmacol., 2010, vol. 626, pp. 262–265. https://doi.org/10.1016/j.ejphar.2009.09.037

    Article  CAS  PubMed  Google Scholar 

  23. Sorokina I.V., Zhukova N.A., Meshkova Yu.V., Baev D.S., Tolstikova T.G., Bakarev M.A., Lushnikova E.L., Byull. Eksp. Biol. Med., 2022, vol. 173, no. 656–663. https://doi.org/10.47056/0365-9615-2022-173-5-656-663

  24. Van Coppenolle, F., Slomianny, C., Carpentier, F., Le Bourhis, X., Achidouch, A., Croix, D., Legrand, G., Dewailly, E., Fournier, S., Cousse, H., Authie, D., Raynaud, J.-P., Beauvillain, J.-C., Dupouy, J.-P., and Prevarskaya, N., Am. J. Physiol. Endocrinol. Metab., 2001, vol. 280, pp. 120–129. https://doi.org/10.1152/ajpendo.2001.280.1.e120

    Article  Google Scholar 

  25. Tyuzikov, I.A. and Martov, A.G., Andrologiya, 2012, no. 3, pp. 39–47.

  26. Han, Y.T. and Yun, H., Org. Prep. Proc. Int., 2017, vol. 49, pp. 163–168. https://doi.org/10.1080/00304948.2017.1291005

    Article  CAS  Google Scholar 

  27. Shruthi, N., Poojary, B., Kumar, V., Hussain, M.M., Rai, V.M., Pai, V.R., Bhat, M., and Revannasiddappa, B.C., RSC Adv., 2016, vol. 6, pp. 8303–8316. https://doi.org/10.1039/C5RA23282A

    Article  CAS  Google Scholar 

  28. Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., and Mainz, D.T., J. Med. Chem., 2006, vol. 49, pp. 6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  29. Biovia Dicovery Studio Visualizer 2016. https://discover.3ds.com/discovery-studio-visualizer-download.

  30. Jeon, W.-Y., Kim, O.S., Seo, C.-S., Jin, S.E., Kim, J.-A., Shin, H.-K., Kim, Y., and Lee, Y., BMC Complement. Altern. Med., 2017, vol. 17, p. 384. https://doi.org/10.1186/s12906-017-1877-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Avtandilov, G.G., Meditsinskaya morfometriya (Medical Morphometry), Moscow: Meditsina, 1990.

  32. Sanotskii, I.V., Metody opredeleniya toksichnosti i opasnosti khimicheskikh veschestv (toksikometriya) (Methods for Determining the Toxicity and Hazard of Chemicals (Toxicometry)), Moscow: Meditsina, 1970.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Chemical Research Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences (CCU) for conducting spectral and analytical measurements.

Funding

The work was supported by the Basic Research Projects Support Program of the Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences (grant nos. 1021051402785-4-1.4.1 and 1021051703312-0-1.4.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sorokina.

Ethics declarations

Conflict of interest. The authors declare no conflicts of interest.

Statement on the welfare of animals. All manipulations with animals were performed in strict compliance with the Russian legislation, the Order of the Russian Ministry of Healthcare No. 199n issued April 1, 2015, and the provisions of Directive no. 2010/63/EU of the European Parliament and the Council of the European Union issued September 22, 2010, on the protection of animals involved in scientific experimentation.

Additional information

Translated by E. Martynova

Abbreviations: 5-AR, 5-α-reductase; 5-ARI, 5-α-reductase inhibitors; BPH, benign prostatic hyperplasia; DHT– dihydrotestosterone; DCA, deoxycholic acid, and LD50, mean dose causing death of half of the test group.

Corresponding author; phone: +7 (383) 330-36-63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshkova, Y.V., Baev, D.S., Sorokina, I.V. et al. Experimental Evaluation of 3-meta-Pyridine-1,2,4-Oxadiazole Derivative of Deoxycholic Acid as a Prototype of 5-α-Reductase Inhibitors in In Silico and In Vivo Models. Russ J Bioorg Chem 49, 52–64 (2023). https://doi.org/10.1134/S1068162023010181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023010181

Keywords:

Navigation