Skip to main content
Log in

Structural and Functional Alterations in Soil Bacterial Community Compositions after Fifteen-Years Restoration of Chaohu Lakeside Wetland, East China

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil microbes exert a critical effect on the sustainability of urban lakeside wetland ecosystem. Yet, the magnitude and direction to which ecological restoration affects the soil microbial composition and function remain unclear. Thus, this study was carried out to investigate the structural and functional alterations of soil bacterial community under different restoration patterns, including abandoned shoaly grassland (GL) to cultivated flower land (FL), reed shoaly land (RL) and poplar plantation land (PL). 16S rRNA genes sequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were used to determine the genetic diversity and functions of soil bacteria. The results demonstrated that the diversity and richness of soil bacterial community in GL were significantly reduced compared to the other three patterns (P < 0.05). The Proteobacteria phylum, candidatus Saccharibacteria and Gemmatimonas and Sphingomonas genera were the dominant groups in GL pattern, as different from Proteobacteria, Acidobacteria and Gp6 in RL, PL and FL patterns. PICRUSt analysis revealed that the relative frequencies of 26 pathways in Level 2 and 144 pathways in Level 3 were significantly higher in RL, FL and PL patterns than in GL pattern (corrected q value < 0.05). After fifteen years of recovery, natural and artificial restoration increased the diversity of bacterial communities and enrichment in soil nutrients. Some functional genes involved in membrane transport, replication and repair and energy metabolism remarkably promoted the nutrient cycle and metabolic activities in oligotrophic environment (GL), while their relative frequencies could be decreased with the improvement of soil microhabitat during ecological restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. M. Albertsen, P. Hugenholtz, A. Skarshewski, K. L. Nielsen, G. W. Tyson, and P. H. Nielsen, “Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes,” Nat. Biotechnol. 31 (6), 533–538 (2013). https://doi.org/10.1038/nbt.2579

    Article  Google Scholar 

  2. R. Andersen, C. Wells, M. Macrae, and J. Price, “Nutrient mineralization and microbial functional diversity in a restored bog approach natural conditions 10 years post restoration,” Soil Biol. Biochem. 64, 37–47 (2013). https://doi.org/10.1016/j.soilbio.2013.04.004

    Article  Google Scholar 

  3. J. Bai, Q. Zhao, Q. Lu, J. Wang, and X. Ye, “Land-use effects on soil carbon and nitrogen in a typical plateau lakeshore wetland of China,” Arch. Agron. Soil Sci. 60 (6), 817–825 (2013). https://doi.org/10.1080/03650340.2013.839870

    Article  Google Scholar 

  4. A. Bano and P. J. A. Siddiqui, “Characterization of five cyanobacterial species with respect to their requirement for pH and salinity,” Pak. J. Bot. 36 (1), 133–143 (2004).

    Google Scholar 

  5. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. B 57 (1), 289–300 (1995). https://doi.org/10.2307/2346101

    Article  Google Scholar 

  6. A. J. K. Calhoun, J. Arrigoni, R. P. Brooks, M. L. Hunter, and S. C. Richter, “Creating successful vernal pools: a literature review and advice for practitioners,” Wetlands 34 (5), 1027–1038 (2014). https://doi.org/10.1007/s13157-014-0556-8

    Article  Google Scholar 

  7. X. Y. Cao, C. L. Song, J. Xiao, and Y. Y. Zhou, “The optimal width and mechanism of riparian buffers for storm water nutrient removal in the Chinese eutrophic Lake Chaohu watershed,” Water 10 (10), 1489–1500 (2018). https://doi.org/10.3390/w10101489

    Article  Google Scholar 

  8. H. H. Chen, Q. Xia, T. Y. Yang, and W. Shi, “Eighteen-year farming management moderately shapes the soil microbial community structure but promotes habitat-specific taxa,” Front. Microbiol. 9, 1776–1789 (2018). https://doi.org/10.3389/fmicb.2018.01776

    Article  Google Scholar 

  9. N. P. Dash, A. Kumar, M. S. Kaushik, G. Abraham, and P. K. Singh, “Agrochemicals influencing nitrogenase, biomass of N2-fixing Cyanobacteria and yield of rice in wetland cultivation,” Biocatal. Agric. Biotechnol. 9, 28–34 (2017). https://doi.org/10.1016/j.bcab.2016.11.001

    Article  Google Scholar 

  10. Q. Deng, X. Cheng, D. Hui, Q. Zhang, M. Li, and Q. Zhang, “Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China,” Sci. Total Environ. 541, 230–237 (2016). https://doi.org/10.1016/j.scitotenv.2015.09.080

    Article  Google Scholar 

  11. S. E. Evans and M. D. Wallenstein, “Climate change alters ecological strategies of soil bacteria,” Ecol. Lett. 17 (2), 155–164 (2014). https://doi.org/10.1111/ele.12206

    Article  Google Scholar 

  12. B. Ferrari, T. Winsley, M. Ji, and B. Neilan, “Insights into the distribution and abundance of the ubiquitous Candidatus Saccharibacteria phylum following tag pyrosequencing,” Sci. Rep. 4, 3957–3965 (2014). https://doi.org/10.1038/srep03957

    Article  Google Scholar 

  13. N. Fierer and R. B. Jackson, “The diversity and biogeography of soil bacterial communities,” Proc. Natl. Acad. Sci. U.S.A. 103 (3), 626–631 (2006). https://doi.org/10.1073/pnas.0507535103

    Article  Google Scholar 

  14. N. Fierer, J. W. Leff, B. J. Adams, U. N. Nielsen, S. T. Bates, C. L. Lauber, S. Owense, J. A. Gilbert, D. H. Wall, and J. G. Caporaso, “Cross-biome metagenomic analyses of soil microbial communities and their functional attributes,” Proc. Natl. Acad. Sci. U.S.A. 109 (52), 21390–21395 (2012). https://doi.org/10.1073/pnas.1215210110

    Article  Google Scholar 

  15. J. Frouz, A. Toyota, O. Mudrák, V. Jílková, A. Filipová, and T. Cajthaml, “Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession,” Soil Biol. Biochem. 99, 75–84 (2016). https://doi.org/10.1016/j.soilbio.2016.04.024

    Article  Google Scholar 

  16. J. Gao, X. Zhang, G. Lei, and G. Wang, “Soil organic carbon and its fractions in relation to degradation and restoration of wetlands on the Zoigê Plateau, China,” Wetlands 34 (2), 235–241 (2014). https://doi.org/10.1007/s13157-013-0487-9

    Article  Google Scholar 

  17. A. Gransee and H. Führs, “Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions,” Plant Soil 368, 5–21 (2012). https://doi.org/10.1007/s11104-012-1567-y

    Article  Google Scholar 

  18. R. J. Haynes and G. S. Francis, “Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions,” Eur. J. Soil Sci. 44 (4), 665–675 (1993). https://doi.org/10.1111/j.1365-2389.1993.tb02331.x

    Article  Google Scholar 

  19. K. Jangid, W. B. Whitman, L. M. Condron, B. L. Turner, and M. A. Williams, “Soil bacterial community succession during long-term ecosystem development,” Mol. Ecol. 22 (12), 3415–3424 (2013). https://doi.org/10.1111/mec.12325

    Article  Google Scholar 

  20. D. S. Jenkinson, “Determination of microbial biomass carbon and nitrogen in soil,” in Advances in Nitrogen Cycling in Agricultural Ecosystems, Ed. by J. R. Wilson (CAB Int., Wallingford, 1988), pp. 368–386.

    Google Scholar 

  21. D. Jones and V. Willett, “Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil,” Soil Biol. Biochem. 38 (5), 991–999 (2006). https://doi.org/10.1016/j.soilbio.2005.08.012

    Article  Google Scholar 

  22. R. S. Kantor, K. C. Wrighton, K. M. Handley, I. Sharon, L. A. Hug, C. J. Castelle, B. C. Thomas, and J. F. Banfield, “Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla,” mBio 4 (5), e00708 (2013). https://doi.org/10.1128/mBio.00708-13

    Article  Google Scholar 

  23. H. M. Kim, J. Y. Jung, E. Yergeau, C. Y. Hwang, L. Hinzman, S. Nam, S. G. Hong, O. S. Kim, J. Chun, and Y. K. Lee, “Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska,” FEMS Microbiol. Ecol. 89 (2), 465–475 (2014). https://doi.org/10.1111/1574-6941.12362

    Article  Google Scholar 

  24. W. J. Landesman, D. M. Nelson, and M. C. Fitzpatrick, “Soil properties and tree species drive β-diversity of soil bacterial communities.” Soil Biol. Biochem. 76, 201–209 (2014). https://doi.org/10.1016/j.soilbio.2014.05.025

    Article  Google Scholar 

  25. M. G. I. Langille, J. Zaneveld, J. G. Caporaso, D. Mcdonald, D. Knights, J. A. Reyes, J. C. Clemente, D. E. Burkepile, R. L. V. Thurber, R. Knight, R. G. Beiko, and C. Huttenhower, “Predictive functional profiling of microbial communities using 16s rRNA marker gene sequences,” Nat. Biotechnol. 31 (9), 814–821 (2013). https://doi.org/10.1038/nbt.2676

    Article  Google Scholar 

  26. Y. Lian, C. Song, L. Wu, L. Huo, and Z. Cai, “Study of wetland classification on the north bank of Chaohu based on GIS and RS (in Chinese),” J. Hefei Univ. Technol., Soc. Sci. 31 (11), 1736–1739 (2008). https://doi.org/10.3969/j.issn.1003-5060.2008.11.002

    Article  Google Scholar 

  27. J. Liang, X. A. Wang, Z. D. Yu, Z. M. Dong, and J. C. Wang, “Effects of vegetation succession on soil fertility within farming-plantation ecotone in Ziwuling Mountains of the Loess Plateau in China,” J. Integr. Agric. 9 (10), 1481–1491 (2010). https://doi.org/10.1016/S1671-2927(09)60241-8

    Article  Google Scholar 

  28. G. X. Li and K. M. Ma, “PICRUSt-based predicted metagenomic analysis of treeline soil bacteria on Mount Dongling, Beijing,” Acta Ecol. Sin. 38 (6), 2180–2186 (2018). https://doi.org/10.5846/stxb201703130423

    Article  Google Scholar 

  29. T. T. Li, H. Hu, Z. Y. Li, J. Y. Zhang, and D. Li, “The impact of irrigation on bacterial community composition and diversity in Liaohe estuary wetland,” J. Ocean Univ. China. 17 (4), 148–156 (2018). https://doi.org/10.1007/s11802-018-3391-3

    Article  Google Scholar 

  30. X. Z. Li, J. P. Rui, Y. J. Mao, A. Yannarell, and R. Mackie, “Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar,” Soil Biol. Biochem. 68, 392–401 (2014). https://doi.org/10.1016/j.soilbio.2013.10.017

    Article  Google Scholar 

  31. X. Y. Liu, K. Y. Tao, J. Sun, C. Q. He, J. Cui, and X. P. Chen, “The introduction of woody plants for freshwater wetland restoration alters the archaeal community structure in soil,” Land Degrad. Dev. 28 (7), 1933–1942 (2017). https://doi.org/10.1002/ldr.2713

    Article  Google Scholar 

  32. J. Ma, A. M. Ibekwe, C. H. Yang, and D. E. Crowley, “Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations,” Sci. Total Environ. 563–564, 199–209 (2016). https://doi.org/10.1016/j.scitotenv.2016.04.122

    Article  Google Scholar 

  33. K. H. Orwin, D. A. Wardle, D. R. Towns, M. G. S. John, P. J. Bellingham, C. Jones, B. M. Fitzgerald, R. G. Parrish, and P. O. Lyver, “Burrowing seabird effects on invertebrate communities in soil and litter are dominated by ecosystem engineering rather than nutrient addition,” Oecologia 180 (1), 217–230 (2016). https://doi.org/10.1007/s00442-015-3437-9

    Article  Google Scholar 

  34. D. H. Parks, G. W. Tyson, P. Hugenholtz, and R. G. Beiko, “Stamp: statistical analysis of taxonomic and functional profiles,” Bioinformatics 30 (21), 3123–3124 (2014). https://doi.org/10.1093/bioinformatics/btu494

    Article  Google Scholar 

  35. A. L. Peralta, S. Ludmer, J. W. Matthews, and A. D. Kent, “Bacterial community response to changes in soil redox potential along a moisture gradient in restored wetlands,” Ecol. Eng. 73, 246–253 (2014). https://doi.org/10.1016/j.ecoleng.2014.09.047

    Article  Google Scholar 

  36. L. M. Polyanskaya and D. G. Zvyagintsev, “The content and composition of microbial biomass as an index of the ecological status of soil,” Eurasian Soil Sci. 38, 625–633 (2005).

    Google Scholar 

  37. B. C. Salmon and P. W. Arnold, “The uptake of magnesium under exhaustive cropping,” J. Agric. Sci. 61 (3), 421–425 (1963). https://doi.org/10.1017/S0021859600018165

    Article  Google Scholar 

  38. A. K. A. Suleiman, L. Manoeli, J. T. Boldo, M. G. Pereira, and L. F. W. Roesch, “Shifts in soil bacterial community after eight years of land-use change,” Syst. App-l. Microbiol. 36 (2), 137–144 (2013). https://doi.org/10.1016/j.syapm.2012.10.007

    Article  Google Scholar 

  39. Y. Q. Sun, X. Zhang, Z. X. Wu, S. L. Wu, Y. J. Hu, Y. Xing, and B. D. Chen, “Soil microbial community structure and carbon source metabolic diversity in the Realgar mining area (in Chinese),” Acta Sci. Circ. 35 (11), 3669–3678 (2015). https://doi.org/10.13671/j.hjkxxb.2015.0546

    Article  Google Scholar 

  40. Z. Teng, J. Cui, J. Wang, X. Fu, and X. Xu, “Effect of exogenous nitrogen and phosphorus inputs on the microbe-soil interaction in the secondary Castanopsis sclerophylla forest in east China,” iForest 11 (6), 794–801 (2018). https://doi.org/10.3832/ifor2673-011

    Article  Google Scholar 

  41. D. Vijayan and J. G. Ray, “Ecology and diversity of Cyanobacteria in paddy wetlands, Kerala, India,” Am. J. Plant Sci. 6 (18), 2924–2938 (2015). https://doi.org/10.4236/ajps.2015.618288

    Article  Google Scholar 

  42. J. Wu, R. G. Joergensen, B. Pommerening, R. Chaussod, and P. C. Brookes, “Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure,” Soil Biol. Biochem. 22 (8), 1167–1169 (1990). https://doi.org/10.1016/0038-0717(90)90046-3

    Article  Google Scholar 

  43. J. Zeng, X. J. Liu, L. Song, X. G. Lin, H. Y. Zhang, C. C. Shen, and H. Y. Chu, “Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition,” Soil Biol. Biochem. 92, 41–49 (2016). https://doi.org/10.1016/j.soilbio.2015.09.018

    Article  Google Scholar 

  44. C. Zhang, G. B. Liu, S. Xue, and G. L. Wang, “Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau,” Soil Biol. Biochem. 97, 40–49 (2016). https://doi.org/10.1016/j.soilbio.2016.02.013

    Article  Google Scholar 

  45. L. G. Zheng, G. J. Liu, Y. Kang, and R. K. Yang, “Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China,” Environ. Monit. Assess. 166 (1–4), 379–386 (2010). https://doi.org/10.1007/s10661-009-1009-3

    Article  Google Scholar 

  46. W. Zheng, Q. L. Gong, Z. Y. Zhao, J. Liu, B. N. Zhai, Z. H. Wang, and Z. Y. Li, “Changes in the soil bacterial community structure and enzyme activities after intercrop mulch with cover crop for eight years in an orchard,” Eur. J. Soil Biol. 86, 34–41 (2018). https://doi.org/10.1016/j.ejsobi.2018.01.009

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 31770672), the Research Project of Anhui Provincial Education Department (grant number: KJ2018A0153), the Graduate Innovation Foundation of Anhui Agricultural University (grant number: 2018yjs-18), and University-level Project of Xuzhou University of Technology (grant number: XKY2019222).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Teng or X. N. Xu.

Ethics declarations

The authors declared no conflicts of interest to this work.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Z., Fan, W., Wang, H.L. et al. Structural and Functional Alterations in Soil Bacterial Community Compositions after Fifteen-Years Restoration of Chaohu Lakeside Wetland, East China. Eurasian Soil Sc. 54, 98–107 (2021). https://doi.org/10.1134/S1064229321010129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321010129

Keywords:

Navigation