Skip to main content
Log in

The Ecological Functions and Ecosystem Services of Urban and Technogenic Soils: from Theory to Practice (A Review)

  • Genesis and Geography of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A review of Russian and foreign approaches to analyze and assess the ecological and socioeconomic role of urban and technogenic soils is made in the context of the two popular concepts: the ecological functions of soils and ecosystem services. The modern definitions, classification, and evaluation of ecosystem services and their relationships with soil functions are considered both in general and in relation to urban and technogenic soils. Despite some methodological differences, the work shows that the concepts are closely related, and their joint use is highly promising. Three practical examples for the cities of Moscow, Hangzhou, and Hong Kong show a consistent transition from the analysis of soil properties and functions to the assessment of ecosystem services and decision making in engineering, urban improvement, and sustainable urban development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. F. Aparin, The Red Data Book of Soils of Leningrad Oblast (Aeroplan, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  2. S. N. Bobylev, S. V. Solov’eva, and K. S. Sitkina, “Indicators of sustainable development of the Ural region,” Ekon. Reg., No. 2 (34), 10–17 (2013).

    Google Scholar 

  3. E. V. Bondarenko, Candidate’s Dissertation in Biology (Moscow, 2016).

    Google Scholar 

  4. V. I. Vasenev, Candidate’s Dissertation in Biology (Moscow, 2011).

    Google Scholar 

  5. V. I. Vasenev, N. D. Ananyeva, and O. A. Makarov, “Specific features of the ecological functioning of urban soils in Moscow and Moscow oblast,” Eurasian Soil Sci. 45, 194–205 (2012).

    Article  Google Scholar 

  6. M. M. Vizirskaya, M. V. Tikhonova, A. S. Epikhina, and I. M. Mazirov, “Ecological evaluation of tolerance of podzolic soils of forest ecosystems toward recreational load in Moscow region by the example of the Forest Experimental Station of the Russian State Agrarian University–Moscow Timiryazev Agricultural Academy),” Agroekologiya, No. 2, 14–21 (2014).

    Google Scholar 

  7. GN (Hygienic Normatives) 2.1.7.2511-09: Approximate Permissible Concentration of Chemical Substances in Soil (Moscow, 2009) [in Russian].

  8. G. V. Dobrovol’skii, “Problems in genetic soil science,” Pochvovedenie, No. 7, 103–111 (1979).

    Google Scholar 

  9. G. V. Dobrovol’skii and E. D. Nikitin, Conservation of Soils as an Irreplaceable Component of the Biosphere (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  10. G. V. Dobrovol’skii and E. D. Nikitin, Soil Functions in the Biosphere and Ecosystems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  11. G. V. Dobrovol’skii and E. D. Nikitin, Ecological Functions of Soil (Moscow State Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  12. G. V. Dobrovol’skii and E. D. Nikitin, Ecology of Soils (Moscow State Univ., Moscow, 2006) [in Russian].

    Google Scholar 

  13. G. V. Dobrovol’skii and E. D. Nikitin, Ecology of Soils: The Theory about Ecological Functions of Soils (Moscow State Univ., Moscow, 2012) [in Russian].

    Google Scholar 

  14. A Report on the State of the Environment in Moscow City in 2016, Ed. by A. O. Kul’bachevskii (Institute of Urban and System Design, Moscow, 2017) [in Russian].

  15. I. I. Karmanov and D. S. Bulgakov, “Experience in the development of the methods to calculate the value agricultural lands on the basis of soil-ecological approach, in Role of Soils in the Biosphere, Tr. Inst. Pochvoved., Mosk. Gos. Univ., Ross. Akad. Nauk (Institute of Soil Science, Moscow State Univ., Moscow, 2003), No. 3, p.62.

    Google Scholar 

  16. V. A. Kovda, “Biosphere, soils, and their use,” Pochvovedenie, No. 1, 3 (1975).

    Google Scholar 

  17. V. A. Kovda, “Soil cover as a biospheric component,” Vestn. Ross. Akad. Nauk, No. 9, 16 (1973).

    Google Scholar 

  18. V. A. Kovda, “World soil cover and life,” Izv. Akad. Nauk SSSR, Ser. Biol., 181 (1986).

  19. V. A. Kovda and B. G. Rozanov, Soil Science: Soil and Pedogenesis (Vysshaya Shkola, Moscow, 1988), Part1.

    Google Scholar 

  20. D. E. Konyushkov, “Development of the concept of ecosystem services: a review of foreign literature,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 80, 26–49 (2015).

    Google Scholar 

  21. A. S. Kurbatova, V. N. Bashkin, Yu. A. Barannikova, S. G. Gerasimova, E. V. Nikiforova, E. V. Reshetina, V. A. Savel’eva, D. S. Savin, A. V. Smagin, and A. L. Stepanov, Ecological Functions of Urban Soils (Madzhenta, Smolensk, 2004) [in Russian].

    Google Scholar 

  22. O. A. Makarov, Why Soil Should Be Evaluated? (Moscow State Univ., Moscow, 2003) [in Russian].

    Google Scholar 

  23. O. A. Makarov, A. S. Yakovlev, E. V. Tsvetnov, E. V. Bondarenko, Ya. R. Ermiyaev, and A. S. Strokov, “Economic evaluation of soils: existing experience and prospects for development,” APK: Ekon., Uprav., No. 7, 58–67 (2017).

    Google Scholar 

  24. O. E. Medvedeva, “Methods of valuation of valuable natural territories,” Vestn. Gos. Univ. Uprav., No. 1 (19), 32–41 (2007).

    Google Scholar 

  25. O. E. Medvedeva, “Cost evaluation of the harmful environmental impact of degradation and pollution of soils,” Vor. Otsenki, No. 1, 79–90 (2012).

    Google Scholar 

  26. MU-2.1.7.730-99: Methodological Recommendations for Hygienic Evaluation of Urban Soil Quality (Moscow, 1999) [in Russian].

  27. A. Perov, War for climate: how the “carbon tax” will affect utility payments, 2016. https://doi.org/www.rbc.ru/opinions/society/26/04/2016/571f0dd39a794712caedfdd2.

    Google Scholar 

  28. Resolution of the Government of Moscow No. 394-PP of July 10, 2014 on the New General Ecological Policy of Moscow City until 2030 (Moscow, 2014) [in Russian]

  29. SP-11-102-97: Rules on Engineering-Ecological Surveys for Construction Purposes (Moscow, 1997) [in Russian]

  30. A. V. Smagin, Theory and Practice of Soil Construction (Moscow State Univ., Moscow, 2012) [in Russian].

    Google Scholar 

  31. M. V. Tikhonova and M. M. Vizirskaya, “Ecological evaluation of spatiotemporal variability of N2O and CO2 emissions from soils of the background forest site in the north of Moscow megapolis,” in Ecological Monitoring, Modeling, and Design of Natural, Urban, and Agricultural Ecosystems, Ed. by R. M. Valentini (Moscow, 2015), pp. 176–178.

    Google Scholar 

  32. A. A. Tishkov, “Biosphere functions and ecosystem services of the steppe landscapes of Russia,” Arid. Ekosist. 16 (41), 5–15 (2010).

    Google Scholar 

  33. A. A. Tishkov, Biospheric Functions of Natural Ecosystems of Russia (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  34. V. A. Chernikov, R. M. Aleksakhin, A. V. Golubev, I. G. Gringof, V. M. Ivonin, V. F. Kormilitsyn, V. F. Ladonin, Sh. I. Litvak, N. Z. Milashchenko, N. A. Mosienko, L. V. Mosina, S. A. Murakaeva, V. V. Parakiin, G. N. Popov, D. A. Postnikov, et al., Agroecology (Kolos, Moscow, 2000) [in Russian].

    Google Scholar 

  35. O. V. Chernova, “A project of the Red Data Book of Russian soils,” Pochvovedenie, No. 4, 514–519 (1995).

    Google Scholar 

  36. A. S. Shchepeleva, Candidate’s Dissertation in Biology (Moscow, 2015).

    Google Scholar 

  37. K. Adhikari and A. E. Hartemink, “Linking soils to ecosystem services—a global review,” Geoderma 262, 101–111 (2016).

    Article  Google Scholar 

  38. S. S. Andrews, D. L. Karlen, and C. A. Cambardella, “The soil management assessment framework: a quantitative soil quality evaluation method,” Soil Sci. Soc. Am. J. 68, 1945–1962 (2004).

    Article  Google Scholar 

  39. A. Auclerc, “Regulating services provided by urban soils. Biodiversity,” in Soils within Cities (Catena-Schweizerbart, Stuttgart, 2017), pp. 213–220.

    Google Scholar 

  40. A. Balmford, A. Bruner, P. Cooper, R. Costanza, S. Farber, R. E. Green, M. Jenkins, P. Jefferiss, V. Jessamy, J. Madden, K. Munro, N. Myers, S. Naeem, J. Paavola, M. Rayment, et al., “Ecology—economic reasons for conserving wild nature,” Science 297, 950–953 (2002).

    Article  Google Scholar 

  41. F. Bastida, A. Zsolnay, T. Hernandez, and C. Garcia, “Past, present and future of soil quality indices: a biological perspective,” Geoderma 147, 159–171 (2008).

    Article  Google Scholar 

  42. Federal Soil Protection Act (Bodenschutzgesetz, BBodSchG), Federal Law Gazette, March 17 (1998).

  43. W. E. H. Blum, “Functions of soil for society and environment,” Rev. Environ. Sci. Biotechnol. 4, 75–79 (2005).

    Article  Google Scholar 

  44. J. Bogner, K. Spokas, E. Burton, R. Sweeney, and V. Corona, “Landfills as atmospheric methane sources and sinks,” Chemosphere 31 (9), 4119–4130 (1995).

    Article  Google Scholar 

  45. J. Bouma, “Soil science contributions towards sustainable development goals and their implementation: linking soil functions with ecosystem services,” J. Plant Nutr. Soil Sci. 177 (2), 111–120 (2014).

    Article  Google Scholar 

  46. A. M. Breure, G. B. De Deyn, E. Dominati, T. Eglin, K. Hedlund, J. van Orshoven, and L. Posthuma, “Ecosystem services: a useful concept for soil policy making,” Curr. Opin. Environ. Sustainability 4 (5), 578–585 (2012).

    Article  Google Scholar 

  47. E. Cohen-Shacham, G. Walters, C. Janzen, and S. Maginnis, Nature-Based Solutions to Address Global Societal Challenges (IUCN Commission on Ecosystem Management, IUCN World Commission on Protected Areas, Geneva, 2016).

    Book  Google Scholar 

  48. An Ecosystem Services Approach to Assessing the Impacts of the Deepwater Horizon Oil Spill in the Gulf of Mexico; ocean studies board; division on Earth and life studies; national research council. An Ecosystem Services Approach to Assessing the Impacts of the Deepwater Horizon Oil Spill in the Gulf of Mexico. (National Academies Press, Washington, 2013).

  49. R. Costanza, R. d’Are, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. S. Raskin, P. Sutton, and M. van den Belt, “The value of the world’s ecosystem services and natural capital,” Nature 387, 253–260 (1997).

    Article  Google Scholar 

  50. N. D. Crossman, B. Burkhard, S. Nedkov, L. Willemen, K. Petz, I. Palomo, E. G. Drakou, B. Martín-Lopez, T. McPhearson, K. Boyanova, R. Alkemade, B. Egoh, M. B. Dunbar, and J. Maes, “A blueprint for mapping and modeling ecosystem services,” Ecosyst. Serv. 4, 4–14 (2013).

    Article  Google Scholar 

  51. G. C. Daily, P. A. Matson, and P. M. Vitousek, Nature’s Services: Societal Dependence on Natural Ecosystems (Washington, Island Press, 1997), pp. 113–132.

    Google Scholar 

  52. R. S. De Groot, M. A. Wilson, and R. M. J. Boumans, “A typology for the classification, description and valuation of ecosystem functions, goods and services,” Ecol. Econ. 41, 393–408 (2002).

    Article  Google Scholar 

  53. E. Dominati, A. Mackay, S. Green, and M. Patterson, “A soil change-based methodology for the quantification and valuation of ecosystem services from agroecosystems: a case study of pastoral agriculture in New Zealand,” Ecol. Econ. 100, 119–129 (2014).

    Article  Google Scholar 

  54. E. Dominati, M. Patterson, and A. Mackay, “A framework for classifying and quantifying the natural capital and ecosystem services of soils,” Ecol. Econ. 69, 1858–1868 (2010).

    Article  Google Scholar 

  55. J. W. Doran, “Soil health and global sustainability: translating science into practice,” Ecosyst. Environ. 88, 119–127 (2002).

    Article  Google Scholar 

  56. T. Elmqvist, H. Setala, S. N. Handel, S. van der Ploeg, J. Aronson, J. N. Blignaut, E. Gomez-Baggethun, D. J. Nowak, and K. R. de Groot, “Benefits of restoring ecosystem services in urban areas,” Curr. Opin. Environ. Sustainability 14, 101–108 (2015).

    Article  Google Scholar 

  57. C. D. Elvidge, C. Milesi, J. B. Dietz, B. T. Tuttle, P. C. Sutton, R. Nemani, and J. E. Vogelman, “Paving paradise,” GeoSpatial Solutions 14, 58 (2004).

    Google Scholar 

  58. LIFE Building up Europe’s Green Infrastructure, Addressing Connectivity and Enhancing Ecosystem Functions (European Commission, Luxembourg, 2010).

  59. European Soil Strategy, 2006, Thematic Strategy for Soil Protection (SEC(2006)620) (SEC(2006)1165) (Communication from the Commission to the Council, European Parliament, European Economic and Social Committee and the Committee of the Regions, Brussels, 2006).

  60. How to Feed the World in 2050 (Food and Agriculture Organization, Rome, 2013), Vol. 2050, No.1.

  61. Status of the World’s Soil Resources, Main Report (Food and Agriculture Organization, Rome, 2015).

  62. J. A. Foley, R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, et al., “Global consequences of land use,” Science 309 (5734), 570–574 (2005).

    Article  Google Scholar 

  63. L. Greiner, A. Keller, A. Grêt-Regamey, and A. Paprit, “Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services,” Land Use Policy 69, 224–237 (2017).

    Article  Google Scholar 

  64. R. H. Haines-Young and M. B. Potschin, Common International Classification of Ecosystem Services (CICES): Consultation on Version 4, August–December 2012, Report to the European Environment Agency, EEA Framework Contract No. 866 EEA/IEA/09/003 (European Environment Agency, Brussels, 2013).

    Google Scholar 

  65. D. R. Helliwell, “Valuation of wildlife resources,” Reg. Stud. 3, 41–49 (1969).

    Article  Google Scholar 

  66. R. A. Houghton, “Why are estimates of the terrestrial C balance so different?” Global Change Biol. 9, 500–509 (2003).

    Article  Google Scholar 

  67. S. Hui, Study of Thermal and Energy Performance of Green Roof Systems: Final Report (University of Hong Kong, Hong Kong, 2009).

    Google Scholar 

  68. C. Y. Jim and W. Y. Chen, “Ecosystem services and valuation of urban forests in China,” Cities 26, 187–194 (2009).

    Article  Google Scholar 

  69. J. Ö. G. Jónsson and B. Davídsdóttir, “Classification and valuation of soil ecosystem services,” Agric. Syst. 1452, 24–38 (2016).

    Article  Google Scholar 

  70. S. Juarez, N. Nunan, A.-C. Duday, V. Pouteau, S. Schmidt, S. Hapca, R. Falconer, W. Otten, and C. Chenu, “Effects of different soil structures on the decomposition of native and added organic carbon,” Eur. J. Soil Biol. 58, 81–90 (2013).

    Article  Google Scholar 

  71. D. L. Karlen, C. A. Ditzler, and S. S. Andrews, “Soil quality: Why and how?” J. Soil Water Conserv. 58 (4), 171–179 (2003).

    Google Scholar 

  72. D. L. Karlen, M. J. Mausbach, J. W. Doran, R. G. Cline, R. F. Harris, and G. E. Schuman, “Soil quality: a concept, definition, and framework for evaluation,” Soil Sci. Soc. Am. J. 61, 4–10 (1997).

    Article  Google Scholar 

  73. R. T. King, “Wildlife and man,” New York Conserv. 20 (6), 8–11 (1966).

    Google Scholar 

  74. V. A. Kovda, “Disarmament and preservation of the biosphere,” Environ. Conserv. 8 (4), 258–260 (1981).

    Article  Google Scholar 

  75. R. Lal and B. A. Stewart, Advances in Soil Science: Urban Soils (CRC Press, Boca Raton, 2017).

    Google Scholar 

  76. M. J. Levin, K.-H. J. Kim, J. L. Morel, W. Burghardt, P. Charzynski, and R. K. Shaw, Soils within Cities (Catena–Schweizerbart, Stuttgart, 2017).

    Google Scholar 

  77. K. Lorenz and R. Shaw, “Regulating services provided by urban soils. Carbon storage in urban soils,” in Soils within Cities (Catena-Schweizerbart, Stuttgart, 2017), pp. 203–213.

    Google Scholar 

  78. MA—Millennium Ecosystem Assessment, Ecosystems and Human Well-Being: A Framework for Assessment (Island Press, Washington, 2003).

  79. J. Maes, B. Egoh, L. Willemen, C. Liquete, P. Vihervaara, J. P. Schägner, B. Grizzetti, E. G. Drakou, A. L. Notte, G. Zulian, F. Bouraoui, M. Luisa Paracchini, L. Braat, and G. Bidoglio, “Mapping ecosystem services for policy support and decision making in the European Union,” Ecosyst. Serv. 1 (1), 31–39 (2012).

    Article  Google Scholar 

  80. A. Makó, M. Kocsis, G. Barna, and G. Tóth, Mapping the Storing and Filtering Capacity of European Soils, JRC Technical Report (EUR 28392 EN) (Publications Office of the European Union, Luxembourg, 2017).

    Google Scholar 

  81. M. L. McKinney, “Urbanization as a major cause of biotic homogenization,” Biol. Conserv. 127, 247–260 (2006).

    Article  Google Scholar 

  82. J. L. Morel, C. Chenu, and K. Lorenz, “Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs),” J. Soils Sediments 15 (8), 1659–1666 (2015).

    Article  Google Scholar 

  83. S. Nortcliff, “Standardization of soil quality attributes,” Agric., Ecosyst. Environ. 88, 161–168 (2002).

    Article  Google Scholar 

  84. T. R. Oke, Boundary Layer Climates (Methuen, London, 1989).

    Google Scholar 

  85. D. E. Pataki, M. M. Carreiro, J. Cherrier, N. E. Grulke, V. Jennings, S. Pincetl, R. V. Pouyat, T. H. Whitlow, and W. C. Zipperer, “Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions,” Front. Ecol. Environ. 9, 27–36 (2011).

    Article  Google Scholar 

  86. E. Paul and F. Clark, “Soil as a habitat for organisms and their reactions,” in Soil Microbiology and Biochemistry, Ed. by E. Paul (Academic, New York, 1996), pp. 12–32.

    Google Scholar 

  87. S. T. A. Pickett, M. L. Cadenasso, J. M. Grove, C. G. Boone, P. M. Groffman, E. Irwin, and P. Warren, “Urban ecological systems: scientific foundations and a decade of progress,” J. Environ. Manage. 92, 331–362 (2011).

    Article  Google Scholar 

  88. S. T. A. Pickett, M. L. Cadenasso, J. M. Grove, P.M. Groffman, L. E. Band, C. G. Boone, and M. A. Wilson, “Beyond urban legends: an emerging framework of urban ecology, as illustrated by the Baltimore Ecosystem Study,” BioScience 58, 139–150 (2008).

    Article  Google Scholar 

  89. A. Piotrowska-Dlugosz and P. Charzynski, “The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the ekranic technosols of Torun (Poland),” J. Soils Sediments 15 (1), 47–59 (2015).

    Article  Google Scholar 

  90. R. V. Pouyat, I. D. Yesilonis, M. Dombos, K. Szlavecz, H. Setälä, S. Cilliers, and S. Yarwood, “A global comparison of surface soil characteristics across five cities: a test of the urban ecosystem convergence hypothesis,” Soil Sci. 180 (4–5), 136–145 (2015).

    Article  Google Scholar 

  91. S. Raciti, P. Groffman, J. Jenkins, R. Pouyat, T. Fahey, S. Pickett, and M. Cadenasso, “Accumulation of carbon and nitrogen in residential soils with different land use histories,” Ecosystems 14, 287–297 (2011).

    Article  Google Scholar 

  92. D. A. Robinson, N. Hockley, D. M. Cooper, B. A. Emmett, A. M. Keith, Lebron I., B. Reynolds, E. Tipping, A. M. Tye, C. W. Watts, W. R. Whalley, H. I. J. Black, G. P. Warren, and J. S. Robinson, “Natural capital and ecosystem services, developing an appropriate soils framework as a basis for valuation,” Soil Biol. Biochem. 57, 1023–1033 (2013).

    Article  Google Scholar 

  93. D. G. Rossiter, J. Liu, S. Carlisle, and A.-X. Zhu, “Can citizen science assist digital soil mapping?” Geoderma 259–260, 71–80 (2015).

    Article  Google Scholar 

  94. D. A. Sarzhanov, V. I. Vasenev, I. I. Vasenev, Y. L. Sotnikova, O. V. Ryzhkov, and T. Morin, “Carbon stocks and CO2 emissions of urban and natural soils in Central Chernozemic region of Russia,” Catena 158, 131–140 (2017).

    Article  Google Scholar 

  95. D. Schröter, W. Cramer, R. Leemans, I. C. Prentice, M. B. Araújo, N. W. Arnell, A. Bondea, H. Bugmann, T. R. Carter, C. A. Gracia, A. C. De La Vega-Leinert, M. Erhard, F. Ewert, M. Glendining, J. I. House, et al., “Ecology: ecosystem service supply and vulnerability to global change in Europe,” Science 310 (5752), 1333–1337 (2005).

    Article  Google Scholar 

  96. G. Schwilch, L. Bernet, L. Fleskens, E. Giannakis, J. Leventon, T. Marañón, J. Mills, C. Short, J. Stolte, H. van Delden, and S. Verzandvoort, “Operationalizing ecosystem services for the mitigation of soil threats: a proposed framework,” Ecol. Indic. 67, 586–597 (2016).

    Article  Google Scholar 

  97. A. L. Selhorst and R. Lal, “Net carbon sequestration potential and emission in home lawn turfgrasses of the United States,” Environ. Manage. 51, 198–208 (2013).

    Article  Google Scholar 

  98. K. C. Seto, M. Fragkias, B. Güneralp, and M. K. Reilly, “A meta-analysis of global urban land expansion,” PLoS One 6, e23777 (2011).

    Article  Google Scholar 

  99. A. S. Shchepeleva, V. I. Vasenev, I. M. Mazirov, I. I. Vasenev, I. S. Prokhorov, and D. D. Gosse, “Changes of soil organic carbon stocks and CO2 emissions at the early stages of urban turf grasses’ development,” Urban Ecosyst. 20 (2), 309–321 (2017).

    Article  Google Scholar 

  100. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions, and Recommendations of TEEB (Progress Press, Malta, 2010).

  101. A. P. E. van Oudenhoven, K. Petz, R. Alkemade, L. Hein, and R. S. De Groot, “Framework for systematic indicator selection to assess effects of land management on ecosystem services,” Ecol. Indic. 21, 110–122 (2012).

    Article  Google Scholar 

  102. V. I. Vasenev, A. V. Smagin, N. D. Ananyeva, K. V. Ivashchenko, E. G. Gavrilenko, T. V. Prokofeva, A. Patlseva, J. J. Stoorvogel, D. D. Gosse, and R. Valentini, “Urban soil’s functions: monitoring assessment and management,” in Adaptive Soil Management: From Theory to Practices (Springer Nature, Singapore, 2017), pp. 359–409.

    Chapter  Google Scholar 

  103. V. I. Vasenev, J. J. Stoorvogel, and I. I. Vasenev, “Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region,” Catena 107, 96–102 (2013).

    Article  Google Scholar 

  104. P. M. Vitousek, J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman, “Human alteration of the global nitrogen cycle: sources and consequences,” Ecol. Appl. 7 (3), 737–750 (1997).

    Google Scholar 

  105. B. Vrscaj, L. Poggio, and F. A. Marsan, “A method for soil environmental quality evaluation for management and planning in urban areas,” Landscape Urban Plan. 88, 81–94 (2008).

    Article  Google Scholar 

  106. L. Willemen, N. D. Crossman, S. Quatrini, B. Egoh, F. K. Kalaba, B. Mbilinyi, and R. De Groot, “Identifying ecosystem service hotspots for targeting land degradation neutrality investments in south-eastern Africa,” J. Arid Environ. (in press).

  107. B. Zhao, F. Xu, and Q. Zhao, “Influences of soil physical properties on water-supplying capacity,” Pedosphere 7 (4), 367–374 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vasenev.

Additional information

Original Russian Text © V.I. Vasenev, A.P.E. Van Oudenhoven, O.N. Romzaykina, R.A. Hajiaghaeva, 2018, published in Pochvovedenie, 2018, No. 10, pp. 1177–1191.

Materials of the 9th Congress “Soils of Urban, Industrial, Traffic, Mining and Military Areas, SUITMA.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasenev, V.I., Van Oudenhoven, A.P.E., Romzaykina, O.N. et al. The Ecological Functions and Ecosystem Services of Urban and Technogenic Soils: from Theory to Practice (A Review). Eurasian Soil Sc. 51, 1119–1132 (2018). https://doi.org/10.1134/S1064229318100137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318100137

Keywords

Navigation