Skip to main content
Log in

Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, mediterranean, and tropical monsoon climates

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The processes of the organic matter (OM) mineralization in forest soils developed under temperate continental (Moscow oblast, Russia), Mediterranean (the central and western parts of Spain), and tropical monsoon (southern Vietnam) climates were studied under laboratory conditions. The potential and specific rates of the OM mineralization (PR min and PR min/Corg, respectively), the ecophysiological parameters of the microbial communities status (Cmic, qCO2, and Cmic/Corg), and the sensitivity of the rate of the OM mineralization to the rise in temperature were evaluated by the temperature coefficients (Q 10) determined in the humus horizons (0–10 cm, without forest litter). The average values of PR min for the climatic zones decreased in the following order: Mediterranean (57.1 ± 10.6 mg C/kg per day) > temperate continental (23.8 ± 7.1 mg C/kg per day) > tropical monsoon (10.4 ± 1.6 mg C/kg per day). The lowest resistance of the soil OM to mineralization as evaluated by the PR min/Corg values was found in the Albeluvisol and Phaeozem of the temperate continental climate and in the Acrisol of the Mediterranean climate. The highest Q 10 coefficients were attributed to the OM mineralization in the forest soils of the temperate continental climate. This allowed us to conclude that the observed and expected climate changes with an increase in the mean annual air temperature should lead to the maximum intensification of the OM mineralization processes in the forest soils of northern regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Anan’eva, E. V. Blagodatskaya, D. B. Orlinskii, and T. N. Myakshina, “Methodological Aspects of Determination of the Rate of Substrate-Induced Respiration of Soil Microorganisms,” Pochvovedenie, No. 11, 72–77 (1993).

  2. A. E. Anichkin, Extended Abstract of Candidate’s Dissertation in Biology (IPEE RAN, Moscow, 2008).

  3. E. V. Blagodatskaya, N. D. Anan’eva, and T. N. Myakshina, “Characterization of the State of Microbial Community from Data on the Metabolic Quotient,” Pochvovedenie, No. 2, pp. 205–210 (1995).

  4. Vadyunina, A.F. and Korchagina, Z.A, Methods for Studying Soil Physical Properties (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  5. G. A. Zavarzin, Lectures on the Environmental Biology (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  6. D. G. Zvyagintsev, I. P. Bab’eva, and G. M. Zenova, Soil Biology (Izd. Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  7. I. N. Kurganova, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2010).

  8. I. N. Kurganova, V. O. Lopes de Gerenyu, L. N. Rozanova, et al., “Long-Term Monitoring of the CO2 Emission from a Soddy-Podzolic Soil: Analysis of the Effect of Hydrothermal Conditions and Land Management,” Probl. Ekologich. Monitor. Modelir. Ekosist. 21, 23–44 (2007).

    Google Scholar 

  9. I. N. Kurganova, V. O. Lopes de Gerenyu, A. V. Tiunov, et al., “A Comparative Assessment of the Rate of Organic Matter Mineralization in Soils of Different Parcels of the Monsoon Tropical Forest,” Izv. Ross. Akad. Nauk (2011).

  10. World Reference Base for Soil Resources: The Basis for International Classification and Correlation of Soils, Ed. by V. O. Targulian and M. I. Gerasimova (KMK, Moscow, 2007) [in Russian].

    Google Scholar 

  11. D. S. Orlov, Soil Chemistry (Izd. Mosk. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  12. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter of Russian Soils (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  13. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, et al., “Mineralization of Organic Matter and the Carbon Sequestration Capacity of Zonal Soils,” Pochvovedenie, No. 7, pp. 819–832 (2008) [Eur. Soil Sci. 41 (7), 717–730 (2008)].

  14. V. M. Semenov, L. A. Ivannikova, N. A. Semenova, et al., “Organic Matter Mineralization in Different Soil Aggregate Fractions,” Pochvovedenie, No. 2, 157–165 (2010) [Eur. Soil Sci. 43 (2), 141–148 (2010)].

  15. V. M. Semenov, L. A. Ivannikova, and T. V. Kuznetsova, “Structural-Functional State of Soil Organic Matter,” in Soil Processes and the Spatiotemporal Arrangement of Soils, Ed. by V. N. Kudeyarov (Nauka, Moscow, 2006), pp. 230–247 [in Russian].

    Google Scholar 

  16. W. Zech and G. Hintermaier-Erhard, World Soil Atlas (Izd. Tsentr Akademiya, Moscow, 2007) [in Russian].

    Google Scholar 

  17. J. S. Amthor, “Plant Respiratory Responses to the Environmental and Their Effects on the Carbon Balance,” in Plant-Environment Interactions, Ed. by R. E. Wilkinson (Marcel Decker, New York, 1994).

    Google Scholar 

  18. J. Anderson and K. H. Domsch, “A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soils,” Soil Biol. Biochem. 10, 215–221 (1978).

    Article  Google Scholar 

  19. T. H. Anderson, “Microbial Eco-Physiological Indicators to Assess Soil Quality,” Agric. Ecosyst. Environ. 98, 285–293 (2003).

    Article  Google Scholar 

  20. T. H. Anderson, “Physiological Analysis of Microbial Communities in Soil: Applications and Limitations,” in Beyond the Biomass, Ed. by K. Rits, J. Dighton, and K.E. Giller (J. Wiley & Sons, London, 1994), pp. 67–76.

    Google Scholar 

  21. T. H. Anderson and K. H. Domsch, “The Metabolic Quotient for CO2 (qCO2) as a Specific Activity Parameter to Assess the Effects of Environmental Conditions, such as pH, on the Microbial Biomass of Forest Soils,” Soil Biol. Biochem. 25, 393–395 (1993).

    Article  Google Scholar 

  22. E. Charro, J. F. Gallardo, and A. Moyano, “Degradability of Soils under Oak and Pine in Central Spain,” Eur. J. Forest Res. 129, 83–91 (2010).

    Article  Google Scholar 

  23. J. F. Gallardo Lancho, “Biogeochemistry of Mediterranean Forest Ecosystems: A Case Study,” in Soil Biochemistry, Ed. by J.M. Bollag and G. Stotzky (Marcel Dekker, New York, 2000), Vol. 10.

    Google Scholar 

  24. M. X. Gomez-Rey, M. Madeira, S. J. Gonzalez-Prieto, and J. Coutinho, “Soil C and N Dynamics within a Precipitation Gradient in Mediterranean Eucalypt Plantations,” Plant Soil 336, 157–171 (2010).

    Article  Google Scholar 

  25. I. A. Janssens and K. Pilegaard, “Large Seasonal Changes in Q 10 of Soil Respiration in a Beech Forest,” Glob. Change Biol. 9, 911–918 (2003).

    Article  Google Scholar 

  26. K. Karhu, H. Fritze, M. Tuomi, et al., “Temperature Sensitivity of Organic Matter Decomposition in Two Boreal Forest Soil Profiles,” Soil Biol. Biochem. 42, 72–82 (2010).

    Article  Google Scholar 

  27. T. Kätterer, M. Reichstein, O. Andren, and A. Lomander, “Temperature Dependence of Organic Matter Decomposition: A Critical Review Using Literature Data Analyzed with Different Model,” Biol. Fertil. Soils 27, 258–262 (1998).

    Article  Google Scholar 

  28. M. U. F. Kirschbaum, “The Temperature Dependence of Organic Matter Decomposition-Still a Topic Debate,” Soil Biol. Biochem. 38, 2510–2518 (2006).

    Article  Google Scholar 

  29. M. U. F. Kirschbaum, “The Temperature Dependence of Soil Organic Matter Decomposition, and the Effect of Global Warming on Soil Organic C Storage,” Soil Biol. Biochem. 27, 753–760 (1995).

    Article  Google Scholar 

  30. I. Kurganova, Lopes de Gerenyu V., Sapronov D. “CO2 Emissions from Russian South-Taiga Soils As Affected by Temperature and Land Use,” Extended Abstracts of 6-th International Carbon Dioxide Conference. Sendai, Japan, October 1–5, 2001. P. 540–543.

  31. I. N. Kurganova and J. F. Gallardo-Lancho, Lopes de Gerenyu V.O., Oehm C. “Comparison of C Mineralization Rates in Forest Ecosystems Under Continental (Russia) and Mediterranean (Spain) Conditions // Proceedings of 15-Th Meeting of the International Humic Substances Society “Advances in Natural Organic Matter and Humic Substances Research 2008-2010”, Tenerife,” Canary Islands. June, p. 27.

  32. A. A. Larionova, I. V. Yevdokimov, and S. S. Bykhovets, “Temperature Response of Soil Respiration Is Dependent on Readily Decomposable C,” Biogeoscience 4, 1073–1081 (2007).

    Article  Google Scholar 

  33. V. O. Lopes de Gerenyu, I. N. Kurganova, and D. V. Sapronov, “Carbon Dioxide Fluxes from Arable Soils as Affected by Temperature and Moisture,” in Conservation Agriculture: Environment, Farmers Experiences, Innovations, Socio Economy, Policy (Kluwer Academic Publisher, The Netherlands, 2003).

    Google Scholar 

  34. A. Martin, J. F. Gallardo, and I. Santa Regina, “Aboveground Litter Production and Bioelement Potential Return in an Evergreen Oak Woodland Near Salamanca (Spain),” Ann. Sci. For. 53, 811–818 (1996).

    Article  Google Scholar 

  35. A. Martin, J. F. Gallardo, and I. Santa Regina, “Long-Term Decomposition Process of Leaf Litter from Quercus pyrenaica Forests across a Rainfall Gradient (Spanish Central System),” Ann. Sci. For. 54, 191–202 (1997).

    Article  Google Scholar 

  36. A. Martin, M. Rapp, I. Santa Regina, and J. F. Gallardo, “Leaf Litter Decomposition Dynamics in Some Mediterranean Deciduous Oaks,” Eur. J. Soil Biol. 30, 119–124 (1994).

    Google Scholar 

  37. C. E. Norris, S. A. Quideau, J. S. Bhattiw, and R. E. Wasylishenz, “Soil Carbon Stabilization in Jack Pine Stands along the Boreal Forest Transect Case Study,” Glob. Change Biol. 17, 480–494 (2011).

    Article  Google Scholar 

  38. K. Paustian, J. Six, E. T. Elliott, and H. W. Hunt, “Management Options for Reducing CO2 Emissions from Agricultural Soils,” Biogeochemistry 48, 147–163 (2000).

    Article  Google Scholar 

  39. M. Pavelka, M. Acosta, M. V. Marek, et al., “Dependence of the Q 10 values on the Depth of the Soil Temperature Measuring Point,” Plant Soil 292(1–2), 171–179 (2007).

    Article  Google Scholar 

  40. P. Rovira, M. Jorba, and J. Romanya, “Active and Passive Organic Matter Fractions in Mediterranean Forest Soils,” Biol. Fert. Soils 46, 355–369 (2010).

    Article  Google Scholar 

  41. V. Stolbovoi, Soils of Russia: Correlated with the Revised Legend of the FAO Soil Map of the World and World Reference Base for Soil Resources (IIASA, Laxenburg, Austria, 2000).

    Google Scholar 

  42. D. A. Wardle, “A Comparative Assessment of Factors which Influence Microbial Biomass Carbon and Nitrogen Levels in Soil,” Biol. Rev. 67, 321–358 (1992).

    Article  Google Scholar 

  43. W. Zech, N. Senesi, G. Guggenberger, et al., “Factors Controlling Humification and Mineralization of Soil Organic Matter in the Tropics,” Geoderma 79, 117–161 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.N. Kurganova, V.O. Lopes de Gerenyu, J.F. Gallardo Lancho, C.T. Oehm, 2012, published in Pochvovedenie, 2012, No. 1, pp. 82–94.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurganova, I.N., Lopes de Gerenyu, V.O., Gallardo Lancho, J.F. et al. Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, mediterranean, and tropical monsoon climates. Eurasian Soil Sc. 45, 68–79 (2012). https://doi.org/10.1134/S1064229312010085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229312010085

Keywords

Navigation