Skip to main content
Log in

Quality Factor of Forced Oscillations of a Linear Fractional Oscillator

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Analytical formulas for the amplitude–frequency and phase–frequency characteristics, as well as forced oscillations, of a fractional oscillator have been derived using the harmonic balance method. It has been found that these characteristics depend on the dissipative properties of a medium—memory effects, which are described by fractional-order derivatives. It has been shown that fractional orders of derivatives influence the decay of the oscillatory process and are related to its Q factor. Analytical curves of forced oscillation characteristics for a linear fractional oscillator give the idea that fractional orders can be considered as control parameters for an oscillatory process in a dissipative medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. Petras, Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation (Springer, Berlin, 2011).

    Book  Google Scholar 

  2. R. I. Parovik, Vestnik Yuzhn. Fed. Univ. Ser.: Matem. Model. Program. 11 (2), 108 (2018).

    Google Scholar 

  3. M. Caputo and J. M. Carcione, Rheol. Acta 50 (2), 107 (2011). https://doi.org/10.1007/s00397-010-0524-z

    Article  Google Scholar 

  4. R. Mankin, K. Laas, T. Laas, and S. Paekivi, Phys. Rev. E 97, 012145 (2018). https://doi.org/10.1103/PhysRevE.97.012145

    Article  ADS  Google Scholar 

  5. S. Kumar, M. Gupta, and D. Kumar, Int. J. Electron. 106 (4), 581 (2019). https://doi.org/10.1080/00207217.2018.1545260

    Article  Google Scholar 

  6. A. V. Pskhu and S. S. Rekhviashvili, Tech. Phys. Lett. 44 (12), 1218 (2018). https://doi.org/10.1134/S1063785019010164

    Article  ADS  Google Scholar 

  7. S. A. Butenkov, Izv. Yuzhn. Fed. Univ., Tekh. Nauki 121 (8), 199 (2011).

    Google Scholar 

  8. M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Freeman, New York, 1991).

    MATH  Google Scholar 

  9. A. N. Gerasimov, Akad. Nauk SSSR. Prikl. Matem. Mekh. 12, 529 (1948).

    Google Scholar 

  10. M. Caputo, Elasticit‘a e Dissipazione (Zanichelli, Bologna, 1969).

    Google Scholar 

  11. R. I. Parovik, Komp. Issled. Model. 7 (5), 1001 (2015).

    Google Scholar 

  12. R. I. Parovik, J. Phys.: Conf. Ser. 1141, 012179 (2018). https://doi.org/10.1088/1742-6596/1141/1/012179

    Article  Google Scholar 

  13. S. Li, J. Niu, and X. Li, Chin. Phys. B 27 (12), 120502 (2018). https://doi.org/10.1088/1674-1056/27/12/120502

    Article  Google Scholar 

  14. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).

    MATH  Google Scholar 

  15. F. Olivar-Romero and O. Rosas-Ortiz, J. Phys.: Conf. Ser. 839, 012010 (2017). https://doi.org/10.1088/1742-6596/839/1/012010

    Article  Google Scholar 

Download references

Funding

This study was supported by Presidential Grant no. MK-1152.2018.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Parovik.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parovik, R.I. Quality Factor of Forced Oscillations of a Linear Fractional Oscillator. Tech. Phys. 65, 1015–1019 (2020). https://doi.org/10.1134/S1063784220070154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220070154

Navigation