Skip to main content
Log in

The Application Potential of Silicon Photomultipliers for a Camera of a Small-Size Cherenkov Gamma-Ray Telescope for Reducing the Detection Threshold

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Source and noise signals in a new camera of the TAIGA-IACT Cherenkov γ-ray telescope based on silicon photomultipliers (SiPM) have been simulated. It is shown that application of modern silicon photomultipliers as detecting elements of TAIGA-IACT (instead of the currently used conventional vacuum photomultipliers) will make it possible to reduce the threshold detection energy of cosmic γ quanta by a factor of about 2.5 (from ≃1.5 to ≃0.6 TeV). It is also shown that employment of a standard ZWB3 UV filter mask in the TAIGA-IACT camera would reduce the average signal level by a factor of about 3 and the noise (background) level from the night sky by a factor of about 6, which would allow one to extend the duty cycle of the telescope (in particular, to carry out observations during moonlit nights and twilights) and to additionally reduce the threshold detection energy down to ≃0.3 TeV. The application of a narrower UV filter of 260–300 nm bandwidth can increase the efficiency of determining the primary particle type (γ-hadron separation) in the energy range from ~25 up to ~50 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Hereinafter, the term “EAS electrons” denotes secondary electrons and positrons of an EAS.

  2. Note that, despite the use of the term “intensity” and designations Iλ and I, these parameters characterize particle fluxes (as it was assumed in [28]) rather than total energies of emitted photons and, in this sense, differ from the designations of [27].

  3. This parameter should not be confused with the pixel field of view, which equals to 35° [15] and allows each pixel to “observe” all portions of the telescope mirror.

  4. In the case of vertical incidence, the distance to the EAS axis coincides with the primary-particle impact parameter.

  5. The standard deviations of Vm(λ), VW(λ), PDE(λ), and F(λ) are neglected in (8).

REFERENCES

  1. C. C. Hsu, A. Dettlaff, D. Fink, F. Goebel, W. Haberer, J. Hose, R. Maier, R. Mirzoyan, W. Pimpl, O. Reimann, A. Rudert, P. Sawallisch, J. Schlammer, S. Schmidl, A. Stipp, and M. Teshima, in Proceedings of the International Cosmic Ray Conference,2008, Vol. 3, p. 1511.

  2. E. Gazda, T. Nguyen, N. Otte, and G. Richards, J. Instrum. 11, 11015 (2006).

    Article  Google Scholar 

  3. G. Giavitto, A. Terry, A. Balzer, D. Berge, F. Brun, Th. Chaminade, E. Delagnes, G. Fontaine, M. Füßling, B. Giebels, J. F. Glicenstein, T. Gräber, J. Hinton, A. Jahnke, S. Klepser, et al., Nucl. Instrum. Method. Phys. Res., Sect. A 876, 35 (2017).

    Google Scholar 

  4. CTA Consortium and R. A. Ong, Eur. Phys. J. Web Conf. 209, 01038 (2019).

  5. A. M. Bykov, F. A. Aharonian, A. M. Krassilchtchikov, E. E. Kholupenko, P. N. Aruev, D. A. Baiko, A.  A.  Bogdanov, G. I. Vasilyev, V. V. Zabrodskii, S. V. Troitsky, Y. V. Tuboltsev, A. A. Kozhberov, K. P. Levenfish, and Y. V. Chichagov, J. Tech. Phys. 6, 819 (2017).

    Article  ADS  Google Scholar 

  6. M. L. Knoetig et al., in Proceedings of the 33rd International Cosmic Ray Conference ICRC, Rio de Janeiro,2013, p. 695; arXiv:1307.6116

  7. M. Chantell, C. W. Akerlof, J. Buckley, D. A. Carter-Lewis, M. F. Cawley, V. Connaughton, D. J. Fegan, P.  Fleury, J. Gaidos, A. M. Hillas, R. C. Lamb, E. Pare, H. J. Rose, A. C. Rovero, X. Sarazin, G. Sembroski, M. S. Schubnell, M. Urban, T. C. Weekes, and C. Wilson, in Proceedings of the International Cosmic Ray Conference,1995, Vol. 2, p. 544.

  8. S. Griffin (VERITAS Collab.), in Proceedings of the 34th International Cosmic Ray Conference ICRC,2015, Vol. 34, No. 7, p. 989.

  9. D. Guberman, J. Cortina, R. García, J. Herrera, M.  Manganaro, A. Moralejo, J. Rico, and M. Will (MAGIC Collab.), in Proceedings of the 34th International Cosmic Ray Conference ICRC,2015, Vol. 34, p. 1237.

  10. M. L. Ahnen, S. Ansoldi, L. A. Antonelli, C. Arcaro, et al., Astropart. Phys. 94, 29 (2017).

    Article  ADS  Google Scholar 

  11. Y. L. Zyskin, B. M. Vladimirsky, Y. I. Neshpor, A. A. Stepanian, V. P. Fomin, and V. G. Shitov, in Proceedings of the International Cosmic Ray Conference,1987, No. 2, p. 342.

  12. Y. I. Neshpor, N. N. Chalenko, A. A. Stepanian, O.  R.  Kalekin, N. A. Jogolev, V. P. Fomin, and V. G. Shitov, Astron. Rep., No. 4, 249 (2017).

  13. M. A. Rahman, P. N. Bhat, B. S. Acharya, V. R. Chitnis, P. Majumdar, and P. R. Vishwanath, Exp. Astron., No. 4, 113 (2001).

  14. E. E. Kholupenko, A. M. Bykov, F. A. Aharonyan, G. I. Vasiliev, A. M. Krassilchtchikov, P. N. Aruev, V. V. Zabrodskii, and A. V. Nikolaev, Tech. Phys. 63, 1603 (2018).

    Article  Google Scholar 

  15. L. A. Kuzmichev, I. I. Astapov, P. A. Bezyazeekov, V. Boreyko, A. N. Borodin, N. M. Budnev, R. Wischnewski, A. Y. Garmash, A. R. Gafarov, N. V. Gorbunov, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, et al., Phys. At. Nucl. 81, 497 (2018).

    Article  Google Scholar 

  16. E. E. Kholupenko, P. N. Aruev, D. A. Baiko, A.  A.  Bogdanov, G. I. Vasilyev, V. V. Zabrodskii, A. M. Krasil’shchikov, Y. V. Tuboltsev, and Y. V. Chichagov, Phys. At. Nucl. 79, 1542 (2016).

    Article  Google Scholar 

  17. K. Greisen, Progress in Cosmic Ray Physics (North-Holland, Amsterdam, 1956), Vol. 3.

    Google Scholar 

  18. N. P. Ilina, N. N. Kalmykov, and V. V. Prosin, Sov. J. Nucl. Phys. 55, 1540 (1992).

    Google Scholar 

  19. J. Linsley, in Proceedings of the International Cosmic Ray Conference,2001, Vol. 2, p. 502.

  20. D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers (Forschungsz. Karlsruhe, Karlsruhe, Hannover, Germany, 1998).

    Google Scholar 

  21. The 1976 Standard Atmosphere above 86-km Altitude, NASA Spec. Publ. SP-398 (NASA, 1976), p. 398.

  22. A. J. Krueger and R. A. Minzner, Standard Atmos. 81, 4477 (1976).

    Article  Google Scholar 

  23. A. A. Nevzorov, S. I. Dolgii, A. V. Nevzorov, O. A. Romanovskii, and Yu. V. Gridnev, in Proceedings of the 7th International Conference on Actual Problems of Radiophysics, Tomsk,2017, No. 9, p. 143.

  24. T. K. Sklyadneva, N. Y. Lomakina, and T. V. Bedareva, Atmos. Ocean. Opt. 26, 214 (2013).

    Article  Google Scholar 

  25. R. D. Bozhkov, Meteorol. Gidrol., no. 100 (1969).

  26. C. Berat, S. Bottai, D. de Marco, S. Moreggia, D. Naumov, M. Pallavicini, R. Pesce, A. Petrolini, A. Stutz, E. Taddei, and A. Thea, Astropart. Phys. 5, 221 (2010).

    Article  ADS  Google Scholar 

  27. C. Leinert, S. Bowyer, L. K. Haikala, M. S. Hanner, M. G. Hauser, A. C. Levasseur-Regourd, I. Mann, K. Mattila, W. T. Reach, W. Schlosser, H. J. Staude, G. N. Toller, J. L. Weiland, J. L. Weinberg, and A. N. Witt, Astron. Astrophys. Suppl., No. 1, 1 (1998).

  28. R. Mirzoyan and E. Lorenz, Int. Rep. of the HEGRA Collab. (MPI-PhE, 1994), p. 94-35.

    Google Scholar 

  29. N. Lubsandorzhiev, I. Astapov, P. Bezyazeekov, V. Boreyko, A. Borodin, M. Brueckner, N. Budnev, A. Chiavassa, A. Dyachok, O. Fedorov, A. Gafarov, A. Garmash, N. Gorbunov, V. Grebenyuk, O. Gress, et al., in Proceedings of the 35th International Cosmic Ray Conference ICRC,2017, Vol. 301, No. 1, p. 757.

  30. N. Budnev, I. Astapov, N. Barbashina, A. Barnyakov, P. Bezyazeekov, P. Bogdanov, V. Boreyko, M. Brückner, A. Chiavassa, O. Chvalaev, A. Dyachok, S. Epimakhov, O. Fedorov, E. Fedoseev, A. Gafarov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 845, 330 (2017).

    Google Scholar 

  31. ON Semiconductor, J-Series SiPM Sensors, Silicon Photomultipliers (SiPM), High PDE and Timing Resolution Sensors in a TSV Package. https://www.onsemi.com/pub/Collateral/MICROJ-SERIES-D.PDF. Accessed 2017.

  32. G. Rastegarzadeh and S. Khoshabadi, Iran. J. Astron. Astrophys. 1, 127 (2014).

    Google Scholar 

  33. A. A. Bogdanov, E. E. Kholupenko, Yu. V. Tuboltsev, and Yu. V. Chichagov, Latv. J. Phis. Tech. Sci., No. 1, 13 (2020). https://doi.org/10.2478/lpts-2020-0002

  34. B. A. Aseev, private commun. (2019).

Download references

ACKNOWLEDGMENTS

The authors are grateful to an anonymous reviewer for valuable remarks, which were taken into account to increase the paper quality.

Funding

This study was supported by the Russian Science Foundation, project no. 19-72-20045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Kholupenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholupenko, E.E., Krassilchtchikov, A.M., Badmaev, D.V. et al. The Application Potential of Silicon Photomultipliers for a Camera of a Small-Size Cherenkov Gamma-Ray Telescope for Reducing the Detection Threshold. Tech. Phys. 65, 886–895 (2020). https://doi.org/10.1134/S1063784220060158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220060158

Navigation