Skip to main content
Log in

Numerical Study of the Feasibility of Runaway Electron Generation in an Emerging Cathode Layer of a Self-Sustained High-Pressure Space Discharge

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The formation of the cathode layer of a self-sustained high-pressure space discharge with preliminary ionization of a gas medium, excited by nano- and subnanosecond voltage pulses, is calculated. It is shown that, at pressures of ~1 atm, at the final stage of cathode layer formation, conditions for runaway electron generation are created. Runaway electrons from the electric field amplification region in front of the leading edge of a plasma (streamer) channel, originating from the top of the cathode micronib, is considered. It is shown that, at pressures of ~10 atm, conditions are created for the runaway of electrons immediately after their emission from the top of the micronib in its amplification zone; the runaway electrons thus obtained, in turn, can create preliminary ionization of the gas medium and ensure the formation of the initial phase of space discharge in systems without illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Sov. Phys. Usp. 33, 521 (1990).

    Article  ADS  Google Scholar 

  2. A. V. Gurevich and K. P. Zybin, Phys. Usp. 44, 1119 (2001). https://doi.org/10.1070/PU2001v044n11ABEH000939

    Article  ADS  Google Scholar 

  3. V. F. Tarasenko and S. I. Yakovlenko, Phys. Usp. 47, 887 (2004). https://doi.org/10.1070/PU2004v047n09ABEH001790

    Article  ADS  Google Scholar 

  4. G. A. Mesyats, M. I. Yalandin, et al., Plasma Phys. Rep. 38, 29 (2012). https://doi.org/10.1134/S1063780X11110055

    Article  ADS  Google Scholar 

  5. Runaway Electrons Preionized Diffuse Discharges, Ed. by V. Tarasenko (Nova Science, USA, 2014).

    Google Scholar 

  6. Generation of Runaway Electron Beam and X-Ray in High Pressure Gases, Ed. by V. Tarasenko (STT, Tomsk, 2015; Nova Science, USA, 2016), Vols. 1, 2.

  7. N. M. Zubarev and M. I. Yalandin, G. A. Mesyats, et al., J. Phys. D: Appl. Phys. 51, 284003 (2018).

    Article  Google Scholar 

  8. I. D. Kostyrya, E. Kh. Baksht, and V. F. Tarasenko, Instrum. Exp. Tech. 53, 545 (2010).

    Article  Google Scholar 

  9. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (UD RAS, Yekaterinburg, 1998; Nauka, Moscow, 1991).

  10. O. Chanrion and T. Neubert, J. Geophys. Res. 115, A00E32 (2010). https://doi.org/10.1029/2009JA014774

    Article  ADS  Google Scholar 

  11. S. Celestin and V. P. Pasko, J. Geophys. Res. 116, A03315 (2011). https://doi.org/10.1029/2010JA016260

    Article  ADS  Google Scholar 

  12. B. E. Djakov, J. Phys. D: Appl. Phys. 22, 368 (1989).

    Article  ADS  Google Scholar 

  13. V. I. Kolobov and L. D. Tsendin, Phys. Rev. A 46, 7837 (1992).

    Article  ADS  Google Scholar 

  14. A. N. Tkachev and S. I. Yakovlenko, Tech. Phys. 48, 190 (2003). https://doi.org/10.1134/1.1553559

    Article  Google Scholar 

  15. V. V. Osipov and V. V. Lisenkov, Tech. Phys. 45, 1258 (2000). https://doi.org/10.1134/1.1318960

    Article  Google Scholar 

  16. V. V. Osipov, Phys. Usp. 43, 221 (2000). https://doi.org/10.3367/UFNr.0170.200003a.0225

    Article  ADS  Google Scholar 

  17. S. N. Ivanov and V. V. Lisenkov, Tech. Phys. 55, 53 (2010). https://doi.org/10.1134/S1063784210010093

    Article  Google Scholar 

  18. M. D. Konstantinov, V. V. Osipov, and A. I. Suslov, Sov. Tech. Phys. 35, 1128 (1990).

    Google Scholar 

  19. G. Simon and W. Botticher, J. Appl. Phys. 76, 5036 (1994). https://doi.org/10.1063/1.357215

    Article  ADS  Google Scholar 

  20. H. Akashi, Y. Sakai, and H. Tagashira, Aust. J. Phys. 50, 655 (1997).

    Article  ADS  Google Scholar 

  21. M. Cernak, D. Bessieres, and J. Paillol, J. Appl. Phys. 110, 053303 (2011). https://doi.org/10.1063/1.3630015

    Article  ADS  Google Scholar 

  22. Y. I. Bychkov, S. A. Yampolskaya, and A. G. Yastremskii, Russ. Phys. J. 55, 477 (2012). https://doi.org/10.1007/s11182-012-9837-y

    Article  Google Scholar 

  23. V. V. Lisenkov and V. V. Osipov, Tech. Phys. 52, 1439 (2007). https://doi.org/10.1134/S106378420

    Article  Google Scholar 

  24. Yu. I. Bychkov, V. V. Osipov, et al., Russ. Phys. J. 29, 329 (1986).

    Google Scholar 

  25. I. P. Martynov, V. N. Mekhryakov, and V. V. Osipov, Sov. Tech. Phys. 37, 267 (1992).

    Google Scholar 

  26. S. N. Ivanov and V. G. Shpak, IEEE Trans. Plasma Sci. 39, 2596 (2011). https://doi.org/10.1109/TPS.2011.2157173

    Article  ADS  Google Scholar 

  27. S. N. Ivanov, Dokl. Phys. 49, 701 (2004). https://doi.org/10.1134/1.1848620

    Article  ADS  Google Scholar 

  28. S. N. Ivanov and V. V. Lisenkov, J. Appl. Phys. 124, 103304 (2018). https://doi.org/10.1063/1.5024974

    Article  ADS  Google Scholar 

  29. S. N. Ivanov and V. V. Lisenkov, Plasma Phys. Rep. 44, 369 (2018). https://doi.org/10.1134/S1063780X18030042

    Article  ADS  Google Scholar 

  30. N. M. Zubarev and S. N. Ivanov, Plasma Phys. Rep. 44, 445 (2018). https://doi.org/10.1134/S1063780X18040104

    Article  ADS  Google Scholar 

  31. V. V. Lisenkov and Yu. I. Mamontov, J. Phys.: Conf. Ser. 1141, 012051 (2018). https://doi.org/10.1088/1742-6596/1141/1/012051

    Article  Google Scholar 

  32. V. V. Lisenkov, S. N. Ivanov, Yu. I. Mamontov, and I. N. Tikhonov, Tech. Phys. 63, 1872 (2018). https://doi.org/10.1134/S1063784218120095

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lisenkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisenkov, V.V. Numerical Study of the Feasibility of Runaway Electron Generation in an Emerging Cathode Layer of a Self-Sustained High-Pressure Space Discharge. Tech. Phys. 65, 710–714 (2020). https://doi.org/10.1134/S106378422005014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422005014X

Navigation