Skip to main content
Log in

Study of the Crack Resistance of Microarc Oxidation Coatings after Laser Doping with Zirconium Oxide

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In this paper we present the results of a study of crack resistance of a microarc oxidation coating (MAO) after laser doping with zirconium oxide. Crack resistance was determined by indentation with imprint imaging using atomic force microscopy. Laser doping with zirconium oxide was established to lead to a significant hardening of the MAO coating. The stress intensity factor increases by a factor of 2.7 while surface damage decreases by a factor of 2 compared with the initial MAO coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. I. Komarov, P. A. Vityaz’, V. I. Komarova, N. N. Rozhkova, and P. S. Zolotaya, in Nanostructures in Condensed Media (Inst. Teplo- i Massoobmena, Minsk, 2016), p. 14.

    Google Scholar 

  2. A. S. Kalinichenko, A. I. Komarov, V. I. Komarova, V. V. Meshkova, D. O. Iskandarova, and Yu. I. Frolov, in Modern Methods and Technologies for Production and Processing of Materials (Fiz.-Tekh. Inst. Nats. Akad. Nauk Belarusi, Minsk, 2017), Vol. 2, p. 176.

    Google Scholar 

  3. P. A. Vityaz, A. I. Komarov, V. I. Komarova, and T. A. Kuznetsova, J. Frict. Wear 32, 231 (2011). https://doi.org/10.3103/S106836661104012X

    Article  Google Scholar 

  4. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  Google Scholar 

  5. O. L. Khasanov, V. K. Struts, V. M. Sokolov, V. V. Polisadova, E. S. Dvilis, and Z. G. Bikbaeva, Methods for Measuring the Microhardness and the Crack Resistance of Nanostructured Ceramics: Study Guide (Tomsk. Politekh. Univ., Tomsk, 2011).

    Google Scholar 

  6. A. A. Dmitrievskii, A. O. Zhigachev, D. G. Zhigacheva, and A. I. Tyurin, Tech. Phys. 64, 86 (2019). https://doi.org/10.1134/S1063784219010092

    Article  Google Scholar 

  7. T. A. Kuznetsova, M. A. Andreev, L. V. Markova, and S. A. Chizhik, J. Frict. Wear 28, 279 (2007).

    Article  Google Scholar 

  8. T. A. Kuznetsova, S. A. Chizhik, and A. L. Khudoley, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8, 1275 (2014). https://doi.org/10.7868/S020735281409011X

    Article  Google Scholar 

  9. V. M. Anishchik, V. V. Uglov, A. K. Kuleshov, A. R. Filipp, D. P. Rusalsky, M. V. Astashynskaya, M.  P. Samtsov, T. A. Kuznetsova, F. Thiery, and Y. Pauleau, Thin Solid Films 482, 248 (2005). https://doi.org/10.1016/j.tsf.2004.11.153

    Article  ADS  Google Scholar 

  10. M. Andreyev, L. Markova, T. Kuznetsova, and V. M. Anishchik, Vacuum 78, 451 (2005). https://doi.org/10.1016/j.vacuum.2005.01.067

    Article  ADS  Google Scholar 

  11. T. A. Kuznetsova, M. A. Andreev, and L. V. Markova, Mater., Tekhnol., Instrum. 11, 105 (2006).

    Google Scholar 

  12. T. A. Kuznetsova, M. A. Andreev, and L. V. Markova, Trenie Iznos 26, 521 (2005).

    Google Scholar 

  13. T. M. Ulyanova, L. V. Titova, S. V. Medichenko, Yu. G. Zonov, T. E. Konstantinova, V. A. Glazunova, A. S. Doroshkevich, and T. A. Kuznetsova, Crystallogr. Rep. 51, S144 (2006). https://doi.org/10.1134/S1063774506070212

    Article  ADS  Google Scholar 

  14. T. A. Kuznetsova, V. A. Lapitskaya, S. A. Chizhik, B. Warcholinski, A. Gilewicz, and A. S. Kuprin, IOP Conf. Ser.: Mater. Sci. Eng. 443, 012017 (2018). https://doi.org/10.1088/1757-899X/443/1/012017

    Article  Google Scholar 

  15. T. A. Kuznetsova, V. A. Lapitskaya, S. A. Chizhik, V. V. Uglov, V. I. Shymanski, and N. T. Kvasov, IOP Conf. Ser.: Mater. Sci. Eng. 443, 012018 (2018). https://doi.org/10.1088/1757-899X/443/1/012018

    Article  Google Scholar 

  16. T. A. Kuznetsova, M. A. Andreev, L. V. Markova, and V. A. Chekan, J. Frict. Wear 22, 423 (2001).

    Google Scholar 

  17. V. A. Lapitskaya, T. A. Kuznetsova, S. A. Chizhik, and P. S. Grinchuk, Proc. XIII Int. Conf. “Methodological Aspects of Scanning Probe Microscopy,” Minsk, Belarus, 2018, p. 260.

  18. A. I. Komarov, Yu. I. Frolov, O. G. Devoino, and V. V. Meshkova, Aktual. Vopr. Mashinoved., No. 7, 207 (2018).

  19. A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, J. Adv. Ceram. 2, 87 (2013). https://doi.org/10.1007/s40145-013-0047-z

    Article  Google Scholar 

  20. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982).

    Article  Google Scholar 

  21. G. A. Gogotsi and A. V. Bashta, Strength Mater. 22, 1306 (1990).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Belarusian Republican Foundation for Basic Research, project no. F18R-239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lapitskaya.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapitskaya, V.A., Kuznetsova, T.A., Chizhik, S.A. et al. Study of the Crack Resistance of Microarc Oxidation Coatings after Laser Doping with Zirconium Oxide. Tech. Phys. 64, 1609–1614 (2019). https://doi.org/10.1134/S1063784219110173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219110173

Navigation