Skip to main content
Log in

Diagnostics of Density Fields in Hypersonic Flows around a Cone in a Light-Gas Gun by the Shadow Photometric Method

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A novel approach to obtaining hypersonic flows is proposed and the results of experimental study of hypersonic flows around cones with semivertex angles τ1 = 3° and τ2 = 12° and inflow Mach numbers M = 18 (τ1 = 3°) and 14.4 (τ2 = 12°) are presented. The use of a light-gas gun where a de Laval nozzle is mounted instead of an acceleration channel allows obtaining a hypersonic flow with a high value of optical density of the outflowing gas sufficient for visualization and diagnostics of the flow by optical methods. The flow pattern is visualized by the shadow method. Shadow images are registered using a high-speed Photron Fastcam camera with an exposure time of 1 μs and frame rate of 300 000 fps. The inflow Mach number is computed using the shadow images based on the angle of shock wave inclination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. Smith, J. Fluid Mech. 17, 113 (1963). https://doi.org/10.1017/S0022112063001154

    Article  ADS  Google Scholar 

  2. N. N. Pilyugin, N. E. Leont’ev, and A. N. Golubyatnikov, Usp. Mekh. 2 (2), 97 (2003).

    Google Scholar 

  3. R. Putzar and F. Schaefer, Proc. Eng. 103, 421 (2015). https://doi.org/10.1016/j.proeng.2015.04.041

    Article  Google Scholar 

  4. R. Putzar and F. Schaefer, Int. J. Impact Eng. 88, 118 (2016). https://doi.org/10.1016/j.ijimpeng.2015.09.009

    Article  Google Scholar 

  5. H. W. Ridyard, NASA Research Memorandum NACA-RM-L54C15 (National Advisory Committee for Aeronautics, Washington, 1954).

  6. E. W. E. Rogers, C. J. Berryand, and B. M. Davis, Aeronautical Research Council Report No. 3505 (London, 1964).

  7. R. V. Owens, NASA Research Note NASA-TN-D-3088 (Washington, 1965).

  8. J. P. Hubner, B. F. Carroll, K. S. Schanze, H. F. Ji, and M. S. Holden, AIAA J. 39, 654 (2001). https://doi.org/10.2514/2.1358

    Article  ADS  Google Scholar 

  9. M. Kurita, K. Nakakita, K. Mitsuo, and S. Watanabe, J. Aircr. 43, 1499 (2006). https://doi.org/10.2514/1.13608

    Article  Google Scholar 

  10. A. Brosh and M. I. Kussoy, NASA Technical Memorandum NASA-TM-84410 (Ames Research Center, Moffett Field, 1983).

  11. J. D. Brown, J. L. Brown, and M. I. Kussoy, NASA Technical Memorandum NASA-TM-101008 (Ames Research Center, Moffett Field, 1988).

  12. M. I. Kussoy and K. C. Horstmanand, NASA Technical Memorandum NASA-TM-103909 (Ames Research Center, Moffett Field, 1992).

  13. K. P. Petrov, Aerodynamics of Bodies of the Simplest Shapes (Fizmatlit, Moscow, 1998).

    Google Scholar 

  14. A. N. Radtsig, Experimental Aerohydromechanics (Mosk. Aviats. Inst., Moscow, 2004).

    Google Scholar 

  15. E. Erdem, L. Yang, and K. Kontis, Proc. 16th AIAA/DLR/DGLR Int. Space Planes and Hypersonic Systems and Technologies Conf., Bremen, Germany, 2009, p. AIAA-2009-7347. https://doi.org/10.2514/6.2009-7347

  16. S. Saravanan, G. Jagadeesh, and K. P. J. Reddy, Exp. Therm. Fluid Sci. 33, 782 (2009). https://doi.org/10.1016/j.expthermflusci.2009.02.005

    Article  Google Scholar 

  17. B. M. Bulakh, Nonlinear Conical Gas Flows (Nauka, Moscow, 1970).

    Google Scholar 

  18. L. G. Loitsyanskii, Fluid and Gas Mechanics (Drofa, Moscow, 2003).

    Google Scholar 

  19. L. Pottsepp, J. Aerosp. Sci. 27, 558 (1960). https://doi.org/10.2514/8.8642

    Article  MathSciNet  Google Scholar 

  20. V. A. Bashkin, I. V. Egorov, D. V. Ivanov, and V. V. Pafnut’ev, Uch. Zap. Tsentr. Aerogidrodin. Inst. 34 (3–4), 3 (2003).

  21. V. V. Kovalenko, A. N. Kravtsov, and T. Yu. Melnichuk, TsAGI Sci. J. 42, 37 (2011). https://doi.org/10.1615/TsAGISciJ.v42.i1.30

  22. A. O. Pylypenko, O. B. Polevoy, and O. A. Prykhodko, TsAGI Sci. J. 43, 1 (2012). https://doi.org/10.1615/TsAGISciJ.2012005226

  23. A. Yu. Galaktionov and A. I. Khlupnov, Vestn. Mosk. Gos. Tekh. Univ. Im. N.E. Baumana, Ser. Mashinostr., No. 5, 4 (2015).

  24. N. F. Dimitrieva, Tr. Inst. Sist. Program. Ross. Akad. Nauk 29, 7 (2017).

    Google Scholar 

  25. A. G. Gaydon and I. R. Hurle, The Shock Tube in High Temperature Chemical Physics (Chapman and Hall, London, 1963).

    Google Scholar 

  26. L. A. Vasil’ev, Shadow Techniques (Nauka, Moscow, 1968).

    Google Scholar 

  27. A. F. Belozerov, Optical Methods for Visualization of Gas Flows (Kazan. Gos. Tekhnol. Univ., Kazan, 2007).

  28. P. P. Khramtsov, V. A. Vasetskiy, V. M. Grishchenko, A. I. Makhnach, M. Yu. Chernik, and I. A. Shikh, High Temp. Mater. Processes 9, 209 (2015). https://doi.org/10.1615/HighTempMatProc.2016015794

    Article  Google Scholar 

  29. M. M. Skotnikov, Shadow Quantitative Methods in Gas Dynamics (Nauka, Moscow, 1976).

    Google Scholar 

  30. A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627 (1964). https://doi.org/10.1021/ac60214a047

    Article  ADS  Google Scholar 

  31. K. Bockasten, J. Opt. Soc. Am. 51, 943 (1961). https://doi.org/10.1364/JOSA.51.000943

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Khramtsov.

Ethics declarations

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramtsov, P.P., Vasetskii, V.A., Grishchenko, V.M. et al. Diagnostics of Density Fields in Hypersonic Flows around a Cone in a Light-Gas Gun by the Shadow Photometric Method. Tech. Phys. 64, 1424–1429 (2019). https://doi.org/10.1134/S1063784219100104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219100104

Navigation