Skip to main content
Log in

Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles

  • EXPERIMENTAL INSTRUMENTS AND TECHNIQUE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

At present, the development of magnetic levitation transportation is conducted based on electromagnetic and electrodynamic suspensions the technical and commercial implementation of which has been successfully demonstrated in Korea, China, Japan, and other countries. Sources of an electromagnetic field in suspensions can be normally conducting electromagnets, superconducting magnets and high-coercive permanent magnets. The progress made in the development of new magnetic materials (permanent magnets and high-temperature superconductors) opens up prospects for reducing the energy consumption of levitation transport systems. The authors proposed magnets of all three types, which together ensure the functioning of combined electromagnetic suspension, and created scale models of such magnets. The permanent levitation of suspension models with a load is provided. The correctness of technical solutions is confirmed, software created in the Russian Federation allows one to reliably-scale magnetic systems of suspensions. Thus, all the prerequisites have been completed for the next stage of creating full-scale prototypes of effective levitation systems, in particular, a 50-ton cargo platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Zhuravlev, Active Magnetic Bearings. Theory, Design, Applications (Politekhnika, St. Petersburg, 2003).

    Google Scholar 

  2. Magnetic Levitation Transport, Ed. by V. I. Bocharov and V. D. Nagorskii (Mashinostroenie, Moscow, 1991).

    Google Scholar 

  3. V. A. Dzenzerskii, V. I. Omel’yanenko, S. V. Vasil’ev, V. I. Matin, and S. A. Sergeev, High-Speed Magnetic Transport with Electrodynamic Levitation (Naukova Dumka, Kiev, 2001).

    Google Scholar 

  4. K. K. Kim, Electric Transport Systems Utilizing Magnetic Levitation and Superconductivity (Uchebno-Metod. Tsentr Obraz. Zheleznodorozhn. Transp., Moscow, 2007).

    Google Scholar 

  5. Y. Kim, K. Kim, and J. Lee, IEEE Trans. Magn. 37, 2851 (2001).

    Article  ADS  Google Scholar 

  6. Q. Chen, J. Li, G. Li, and S. Zhou, MATEC Web Conf. 95, 15011 (2017).

  7. A. V. Kireev, N. M. Kozhemyaka, and G. N. Kononov, Int. J. Appl. Eng. Res. 12, 7219 (2017).

    Google Scholar 

  8. V. M. Amoskov, D. N. Arslanova, A. M. Bazarov, A. V. Belov, V. A. Belyakov, T. F. Belyakova, V. N. Vasil’ev, E. I. Gapionok, A. A. Zaitsev, M. V. Kaparkova, V. P. Kukhtin, E. A. Lamzin, M. S. Larionov, N. A. Maksimenkova, V. M. Mikhailov, et al., Vestn. S.-Peterb. Univ. Ser. 10, No. 4, 5 (2014).

    Google Scholar 

  9. V. M. Amoskov, D. N. Arslanova, A. M. Bazarov, A. V. Belov, V. A. Belyakov, T. F. Belyakova, V. N. Vasil’ev, E. I. Gapionok, A. A. Zaitsev, M. V. Kaparkova, V. P. Kukhtin, E. A. Lamzin, M. S. Larionov, N. A. Maksimenkova, V. M. Mikhailov, et al., Vestn. S.-Peterb. Univ. Ser. 10, No. 2, 17 (2015).

    Google Scholar 

  10. V. M. Amoskov, D. N. Arslanova, A. M. Bazarov, A. V. Belov, V. A. Belyakov, T. F. Belyakova, V. N. Vasil’ev, E. I. Gapionok, A. A. Zaitsev, M. V. Kaparkova, V. P. Kukhtin, E. A. Lamzin, M. S. Larionov, N. A. Maksimenkova, V. M. Mikhailov, et al., Vestn. S.-Peterb. Univ. Ser. 10, No. 3, 4 (2015).

    Google Scholar 

  11. V. M. Amoskov, D. N. Arslanova, A. M. Bazarov, A. V. Belov, V. A. Belyakov, T. F. Belyakova, V. N. Vasil’ev, E. I. Gapionok, A. A. Zaitsev, M. Yu. Zenkevich, M. V. Kaparkova, V. P. Kukhtin, E. A. Lamzin, M. S. Larionov, N. A. Maksimenkova, et al., Vestn. S.-Peterb. Univ. Ser. 10, No. 3, 4 (2016).

    Google Scholar 

  12. A. V. Belov, T. F. Belyakova, I. V. Gornikel, V. P. Kukhtin, V. G. Kuchinsky, E. A. Lamzin, A. G. Semchenkov, N. A. Shatil, and S. E. Sytchevsky, IEEE Trans. Appl. Supercond. 18, 1609 (2008).

    Article  ADS  Google Scholar 

  13. I. E. Tamm, Introduction to the Theory of Electricity (GITTL, Moscow, 1954).

    Google Scholar 

  14. A. V. Belov, N. I. Doinikov, A. E. Duke, V. V. Kokotkov, M. D. Korolkov, V. L. Kotov, V. P. Kukhtin, E. A. Lamzin, and S. E. Sytchevsky, Fusion Eng. Des. 31, 167 (1996).

    Article  Google Scholar 

  15. S. V. Zavadskii and D. S. Sharovatova, Protsessy Upr. Ustoich. 2, 409 (2015).

    Google Scholar 

  16. V. Amoskov, D. Arslanova, G. Baranov, A. Bazarov, V. Belyakov, A. Firsov, M. Kaparkova, A. Kavin, M. Khokhlov, V. Kukhtin, V. Kuzmenkov, A. Labusov, E. Lamzin, A. Lantzetov, M. Larionov, et al., Cybern. Phys. 7, 11 (2018).

    Google Scholar 

  17. https://www.cadfem-cis.ru/products/ansys.

  18. V. S. Popov, N. N. Mansurov, and S. A. Nikolaev, Electrical Engineerings (Minist. Kommunal’n. Khoz. RSFSR, Moscow, 1956).

    Google Scholar 

  19. V. Yu. Kiryakin, V. Sh. Lezhava, A. V. Novgorodtseva, M. V. Sokolova, and L. N. Ponarin, Byull. Ob’’ed. Uch. Sov. OAO RZhD, No. 5, 28 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Andreev.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, E.N., Arslanova, D.N., Akhmetzyanova, E.V. et al. Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles. Tech. Phys. 64, 1060–1065 (2019). https://doi.org/10.1134/S1063784219070041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219070041

Navigation