Skip to main content
Log in

Quadrupole Radiation of an Uncharged Droplet That Oscillates in the Presence of Uniform Electric Field

  • ATOMIC AND MOLECULAR PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Capillary oscillations of an uncharged spheroid droplet of nonviscous conducting uncompressible liquid in the presence of uniform electric field are analyzed in the first order of smallness with respect to the ratio of the oscillation amplitude to a linear size of the droplet and in the second order of smallness with respect to the squared ratio of the linear size to the radiation wavelength. It is shown that the electric quadrupole moment of the droplet is time-dependent due to surface oscillations, which lead to the emission of quadrupole electromagnetic waves. A mathematical model of the quadrupole electromagnetic radiation of an uncharged droplet that oscillates in the presence of electrostatic field is constructed, and the radiation intensity and frequency are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. I. Kalechits, I. E. Nakhutin, and P. P. Poluektov, Dokl. Akad. Nauk SSSR 262, 1344 (1982).

    Google Scholar 

  2. D. V. Sivukhin, General Physics Course, Vol. 3: Electricity. Part 2 (Nauka, Moscow, 1996).

  3. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973).

    MATH  Google Scholar 

  4. A. I. Grigor’ev and S. O. Shiryaeva, Tech. Phys. 61, 1885 (2016).

    Article  Google Scholar 

  5. A. I. Grigor’ev, N. Yu. Kolbneva, and S. O. Shiryaeva, Fluid Dyn. 53, 234 (2018).

    Article  MathSciNet  Google Scholar 

  6. Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 6, 348 (1936).

    Google Scholar 

  7. V. V. Sterlyadkin, Izv. Akad. Nauk SSSR. Ser. Fiz. Atmos. Okeana 24, 613 (1988).

    Google Scholar 

  8. K. V. Beard and A. Tokay, Geophys. Res. Lett. 18, 2257 (1991).

    Article  ADS  Google Scholar 

  9. C. T. O’Konski and H. C. Thacher, J. Phys. Chem. 57, 955 (1953).

  10. C. G. Garton and Z. Krasucki, Trans. Faraday Soc. 60, 211 (1964).

    Google Scholar 

  11. E. L. Ausman and M. Brook, J. Geophys. Res. 72, 6131 (1967).

  12. K. J. Cheng, Phys. Lett. A 112, 392 (1985).

    Article  ADS  Google Scholar 

  13. I. I. Inculet, J. M. Floryan, and R. J. Haywood, IEEE Trans. Ind. Appl. 28, 1203 (1992).

    Article  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986).

    Google Scholar 

  15. V. G. Levich, Physicochemical Fluid Mechanics (Fizmatgiz, Moscow, 1959).

    Google Scholar 

  16. C. D. Hendrics and J. M. Schneider, J. Am. Phys. 1, 450 (1963).

    Article  ADS  Google Scholar 

  17. A. Nayfeh, Perturbation Methods (Wiley, New York, 1973).

    MATH  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982).

    Google Scholar 

  19. V. G. Levich, Course of Theoretical Physics (Fizmatgiz, Moscow, 1969), Vol. 1.

    Google Scholar 

  20. A. I. Grigor’ev, N. Yu. Kolbneva, and S. O. Shiryaeva, Tech. Phys. 62, 930 (2017).

    Article  Google Scholar 

  21. I. P. Mazin and S. M. Shmeter, Clouds. Structure and Physics of Formation (Gidrometeoizdat, Leningrad, 1983).

    Google Scholar 

  22. I. P. Mazin, A. Kh. Khrgian, and I. M. Imyanitov, Clouds and Cloudy Atmosphere. Handbook (Gidrometeoizdat, Leningrad, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Grigor’ev.

Additional information

Translated by A. Chikishev

APPENDIX

APPENDIX

Coefficients k1k6 and p1p6 in expressions (10) and (13) are given by the following expressions:

$${{k}_{1}} = \frac{{j(j - 1)}}{{(2j - 1)}},\quad {{k}_{2}} = \frac{{(j + 1)(j - 1)}}{{(2j + 3)}},$$
$${{k}_{3}} = \frac{{j(j - 1)(j - 2)(2{{j}^{2}} + 3j + 7)}}{{2(2j - 1)(2j - 3)(2j - 5)}},$$
$${{k}_{4}} = \frac{{j(100{{j}^{5}} + 116{{j}^{4}} - 165{{j}^{3}} - 205{{j}^{2}} + 75j - 81)}}{{30{{{(2j - 1)}}^{2}}(2j - 3)(2j + 3)}},$$
$${{k}_{5}} = \frac{{(j + 1)(100{{j}^{5}} + 765{{j}^{4}} + 2159{{j}^{3}} + 2591{{j}^{2}} + 704j - 600)}}{{30(2j - 1){{{(2j + 3)}}^{2}}(2j + 5)}},$$
$${{k}_{6}} = \frac{{(j + 1)(j + 2)(j + 3)(2{{j}^{2}} + 11j + 21)}}{{2(2j + 3)(2j + 5)(2j + 7)}},$$
$${{p}_{1}} = \frac{{j(j + 3)}}{{(2j - 1)}},\quad {{p}_{2}} = \frac{{(j + 1)(j + 3)}}{{(2j + 3)}},$$
$${{p}_{3}} = - \frac{{j(j - 1)(j - 2)(9j - 1)}}{{2(2j - 1)(2j - 3)(2j - 5)}},$$
$${{p}_{4}} = - \frac{{j(40{{j}^{5}} + 274{{j}^{4}} - 265{{j}^{3}} - 475{{j}^{2}} + 375j - 9)}}{{30{{{(2j - 1)}}^{2}}(2j - 3)(2j + 3)}},$$
$${{p}_{5}} = \frac{{(j + 1)(135{{j}^{9}} + 990{{j}^{8}} + 2990{{j}^{7}} + 4924{{j}^{6}} + 6145{{j}^{5}} + 8251{{j}^{4}} + 7564{{j}^{3}} + 1927{{j}^{2}} - 886j - 360)}}{{30(2j - 1){{{(2j + 1)}}^{2}}{{{(2j + 3)}}^{2}}(2j + 5)}},$$
$${{p}_{6}} = - \frac{{j(j + 1)(j + 2)(j + 3)(4{{j}^{2}} + 7j - 5)}}{{2(2j + 3)(2j + 5)(2j + 7)}}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, A.I., Shiryaeva, S.O. & Kolbneva, N.Y. Quadrupole Radiation of an Uncharged Droplet That Oscillates in the Presence of Uniform Electric Field. Tech. Phys. 64, 324–330 (2019). https://doi.org/10.1134/S1063784219030137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219030137

Navigation