Skip to main content
Log in

Simulation of the sensor response of vacuummeters with sensitive elements based on multicomponent oxide nanomaterials with the fractal structure

  • Experimental Instruments and Technique
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have proposed a mathematical model of the sensor response of vacuummeters with sensitive elements based on broadband semiconductor oxide with electrical conductivity of the n- and p-type, as well as the multicomponent oxide systems. The correctness of the model description of the dependence of the resistivity of nanomaterials synthesized by the sol–gel method and has the structure of spherical aggregates of fractal origin on the ambient pressure has been demonstrated. It has been shown that, taking into account the corrections, the developed model can be used to qualitatively describe the sensor response of nanomaterials based on two-component SiO2—SnO2 oxide systems with a labyrinth structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. A. Shilova, Glass Technol. 45, 1 (2004).

    Google Scholar 

  2. A. S. Komolov, N. B. Gerasimova, E. V. Lazneva, S. A. Komolov, and I. Z. Buzin, Rus. J. Appl. Chem. 83, 835 (2010).

    Article  Google Scholar 

  3. V. A. Moshnikov, I. E. Gracheva, V. V. Kuznezov, A. I. Maximov, S. S. Karpova, and A. A. Ponomareva, J. Non-Cryst. Solids 356, 2020 (2010).

    Article  ADS  Google Scholar 

  4. V. A. Moshnikov, S. S. Nalimova, and B. I. Seleznev, Semiconductors 48, 1499 (2014).

    Article  ADS  Google Scholar 

  5. M. P. Fedotova, G. A. Voronova, E. Yu. Emel’yanova, N. I. Radishevskaya, and O. V. Vodyankina, Zh. Fiz. Khim. 83, 1539 (2009).

    Google Scholar 

  6. I. A. Pronin, N. V. Kaneva, A. S. Bozhinova, I. A. Averin, K. I. Papazova, D. Ts. Dimitrov, and V. A. Moshnikov, Kinet. Catal. 55, 167 (2014).

    Article  Google Scholar 

  7. A. B. Yaroslavtsev, Usp. Khim. 78, 1094 (2009).

    Article  Google Scholar 

  8. S.-J. Chang, T.-J. Hsueh, C.-L. Hsu, Y. R. Lin, I.-C. Chen, and B.-R. Huang, Nanotechnology 19, 095505 (2008).

    Article  ADS  Google Scholar 

  9. Liming Wu, Fang Fang Song, Xuxiong Fang, Zhi-Xin Guo, and S. Liang, Nanotechnology 21, 475502 (2010).

    Article  Google Scholar 

  10. V. B. Kapustyanyk, M. R. Panasyuk, B. I. Turko, Yu. G. Dubov, and R. Ya. Serkiz, Semiconductors 48, 1395 (2014).

    Article  ADS  Google Scholar 

  11. I. A. Averin, S. E. Igoshina, V. A. Moshnikov, A. A. Karmanov, I. A. Pronin, and E. I. Terukov, Tech. Phys. 60, 928 (2015).

    Article  Google Scholar 

  12. X. J. Zheng, X. C. Cao, J. Sun, B. Yuan, Q. H. Li, Z. Zhu, and Y. Zhang, Nanotechnology 22, 435501 (2011).

    Article  Google Scholar 

  13. R. B. Vasil’ev, L. I. Ryabova, M. N. Rumyantseva, and A. M. Gas’kov, Usp. Khim. 73, 1019 (2004).

    Google Scholar 

  14. V. V. Krivetskii, M. N. Rumyantseva, and A. M. Gas’kov, Usp. Khim. 82, 917 (2013).

    Article  Google Scholar 

  15. S. E. Igoshina, I. A. Averin, and A. A. Karmanov, Vestn. Ryazanskogo Gos. Radiotekh. Univ., No. 48, 115 (2014).

    Google Scholar 

  16. I. A. Pronin and M. V. Goryacheva, Surf. Coat. Technol. 235, 835 (2013).

    Article  Google Scholar 

  17. V. V. Kisin, V. V. Sysoev, S. A. Voroshilov, and V. V. Simakov, Semiconductors 34, 308 (2000).

    Article  ADS  Google Scholar 

  18. R. Zhyul’en, Usp. Fiz. Nauk 157, 339 (1989).

    Article  Google Scholar 

  19. M. N. Rumyantsev, “Chemical modification and sensory properties of nanocrystalline tin dioxide,” Candidate’s Dissertation (Moscow, 2009).

    Google Scholar 

  20. A. Zima, A. Köck, and T. Maier, Microelectron. Eng. 87, 1467 (2010).

    Article  Google Scholar 

  21. Sensors and “Smart” Molecular Nanostructures: Component for Future Information Technologies, Ed. by W. Gopel, J. Hesse, and J.N. Zemel (VCH, Weinheim, 1995), Vol.8.

  22. V. V. Sysoev, “Multisensor systems of gas recognition based on metal-oxide thin films and nanostructures,” Candidate’s Dissertation (Saratov, 2009).

    Google Scholar 

  23. A. Fort, M. Mugnaini, S. Rocchi, M. B. Serrano-Santos, V. Vignoli, and R. Spinicci, Sens. Actuators, B 124, 245 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Averin.

Additional information

Original Russian Text © I.A. Averin, S.E. Igoshina, A.A. Karmanov, I.A. Pronin, V.A. Moshnikov, E.I. Terukov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 5, pp. 780–787.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averin, I.A., Igoshina, S.E., Karmanov, A.A. et al. Simulation of the sensor response of vacuummeters with sensitive elements based on multicomponent oxide nanomaterials with the fractal structure. Tech. Phys. 62, 799–806 (2017). https://doi.org/10.1134/S1063784217050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217050061

Navigation