Skip to main content
Log in

Plasmachemical synthesis and basic properties of CoFe2O4 magnetic nanoparticles

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Cobalt-ferrite (CoFe2O4) nanoparticles (CFNPs) are obtained using direct plasmachemical synthesis in the plasma of a low-pressure arc discharge. The formation of the CFNPs with an average size of 9 nm and a narrow granulometric composition is established employing the methods of X-ray structure analysis and transmission microscopy. The CFNP behavior upon high-temperature annealing is analyzed. The CFNP functional groups are determined using the infrared Fourier spectrum. The results of the X-ray energy dispersion confirm the correspondence of the ratio of the number of atoms of each material to the nominal stoichiometry. The basic magnetic properties of the obtained and annealed samples are investigated at room temperature using the vibrating spectrum magnetometry (VSM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Alexiou, R. Jurgons, R. Schmid, A. Hilpert, C. Bergemann, F. Parak, and H. Iro, J. Magn. Magn. Mater. 293, 389 (2005).

    Article  ADS  Google Scholar 

  2. I. Skumiel, J. Magn. Magn. Mater. 307, 85 (2006).

    Article  ADS  Google Scholar 

  3. A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix, J. Magn. Magn. Mater. 255, 118 (2001).

    Article  ADS  Google Scholar 

  4. M. H. Khedr and A. A. Farghali, Appl. Catal. B 9, 219 (2005).

    Article  Google Scholar 

  5. M. Rajendran, R. C. Pullar, A. K. Bhattacharya, D. Das, S. N. Chintalapudi, and C. K. Majumdar, J. Magn. Magn. Mater. 232, 71 (2001).

    Article  ADS  Google Scholar 

  6. C. N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, D. J. Djayaprawira, M. Takahashi, R. J. Joseyphus, and A. Narayanasamy, Appl. Phys. Lett. 83, 2862 (2003).

    Article  ADS  Google Scholar 

  7. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, and G. Zou, Mater. Lett. 6, 3548 (2006).

    Article  Google Scholar 

  8. E. Omurzak, J. Jasnakunov, N. Mairykova, A. Abdykerimova, A. Maatkasymova, S. Sulaimankulova, M. Matsuda, M. Nishida, H. Ihara, and T. Mashimo, J Nanosci. Nanotechnol. 7, 3157 (2007).

    Article  Google Scholar 

  9. I. Bica, Mater. Sci. Eng., B 68, 59 (1999).

    Article  Google Scholar 

  10. D. N. McIlroy, J. Huso, Y. Kranov, J. Marchinek, C. Ebert, S. Moore, E. Marji, and R. Gandy, J. Appl. Phys. 93, 5643 (2005).

    Article  ADS  Google Scholar 

  11. I. Banerjee, Y. B. Khollam, C. Balasubramanian, R. Pasricha, P. P. Bakare, K. R. Patil, A. K. Das, and S. V. Bhoraskar, Scr. Mater. 54, 1235 (2006).

    Article  Google Scholar 

  12. L. Zajickova, P. Synek, O. Jasek, M. Elias, B. David, J. Bursik, N. Pizurova, R. Hanzlikova, and L. Lazar, Appl. Surf. Sci. 255, 5421 (2009).

    Article  ADS  Google Scholar 

  13. A. V. Ushakov, I. V. Karpov, A. A. Lepeshev, and L. Yu. Fedorov, Remont Vosstanovl. Modernizats., No. 9, 41 (2012).

    Google Scholar 

  14. I. V. Karpov, A. V. Ushakov, L. Yu. Fedorov, and A. A. Lepeshev, Tech. Phys. 59, 559 (2014).

    Article  Google Scholar 

  15. S. R. Ahmed, S. B. Ogale, G. C. Papaefthymiou, R. Ramesh, and P. Kofinas, Appl. Phys. Lett. 80, 1616 (2002).

    Article  ADS  Google Scholar 

  16. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  17. D. V. Wiles and R. A. Young, J. Appl. Crystallogr. 14, 149 (1981).

    Article  Google Scholar 

  18. P. Thompson, D. E. Cox, and J. B. Hastings, J. Appl. Crystallogr. 20, 79 (1987).

    Article  Google Scholar 

  19. J. T. Keiser, C. W. Brown, and R. H. Heidersbach, J. Electrochem. Soc. 129, 2686 (1982).

    Article  Google Scholar 

  20. V. Sepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. J. Litterst, and K. D. Becker, J. Magn. Magn. Mater. 257, 377 (2003).

    Article  ADS  Google Scholar 

  21. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, and Jr. S. Foner, Phys. Rev. Lett. 77, 394 (1996).

    Article  ADS  Google Scholar 

  22. S. D. Tiwari and K. P. Rajeev, Phys. Rev. B 72, 104433 (2005).

    Article  ADS  Google Scholar 

  23. L. J. Zhao, V. Zhang, Y. Xing, S. Y. Song, S. Y. Yu, W. D. Shi, X. M. Guo, J. H. Yang, and F. Lei Cao, J. Solid State Chem. 81, 245 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ushakov.

Additional information

Original Russian Text © A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, L.Yu. Fedorov, A.A. Shaikhadinov, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 61, No. 1, pp. 105–109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, A.V., Karpov, I.V., Lepeshev, A.A. et al. Plasmachemical synthesis and basic properties of CoFe2O4 magnetic nanoparticles. Tech. Phys. 61, 103–107 (2016). https://doi.org/10.1134/S1063784216010230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216010230

Keywords

Navigation