Skip to main content
Log in

Experimental and theoretical determination of the strongly anisotropic velocity distribution functions of ions in the intrinsic gas plasma in strong fields

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The first seven coefficient of expansion of the energy and angular distribution functions in the Legendre polynomials for Hg+ ions in the Hg vapor plasma with parameter E/P ≈ 400 V/(cm Torr) are measured for the first time using a planar one-sided probe. The analytic solution to the Boltzmann kinetic equation for ions in the plasma of their parent gas is obtained in the conditions when the resonant charge exchange is the predominant process, and an ion acquires on its mean free path a velocity much higher than the characteristic velocity of thermal motion of atoms. The presence of an ambipolar field of an arbitrary strength is taken into account. It is shown that the ion velocity distribution function is determined by two parameters and differs substantially from the Maxwellian distribution. Comparison of the results of calculation of the drift velocity of He+ ions in He, Ar+ in Ar, and Hg+ in Hg with the available experimental data shows their conformity. The results of calculation of the ion distribution function correctly describe the experimental data on its measurement. Analysis of the result shows that in spite of the presence of the strong field, the ion velocity distribution functions are isotropic for ion velocities lower than the average thermal velocity of atoms. With increasing ion velocity, the distribution becomes more and more extended in the direction of the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu. A. Ivanov and L. S. Polak, in Plasma Chemistry, Ed. by B. M. Smirnov (Atomizdat, Moscow, 1975), Vol. 2, pp. 161–198.

  2. L. A. Sena, Zh. Eksp. Teor. Fiz. 6, 34 1946.

    Google Scholar 

  3. Yu. M. Kagan and V. I. Perel’, Dokl. Akad. Nauk SSSR 98, 575 1954.

    Google Scholar 

  4. Yu. M. Kagan and V. I. Perel’, Zh. Eksp. Teor. Fiz. 29, 84 1955.

    Google Scholar 

  5. B. M. Smirnov, Sov. Phys. Tech. Phys. 11, 520 1966.

    Google Scholar 

  6. V. I. Perel’, Sov. Phys. JETP 5, 436 1957.

    Google Scholar 

  7. V. A. Fok, Zh. Eksp. Teor. Fiz. 18, 1048 1948.

    Google Scholar 

  8. V. E. Golant, A. P. Zhilinskii, and S. A. Sakharov, Foundations of Plasma Physics (Atomizdat, Moscow, 1977).

    Google Scholar 

  9. A. Ya. Ender and I. A. Ender, Tech. Phys. 55, 166 2010.

    Article  Google Scholar 

  10. A. Ya. Ender and I. A. Ender, Tech. Phys. 55, 1400 2010.

    Article  Google Scholar 

  11. D. Else, R. Kompaneets, and S. V. Vladimirov, Phys. Plasmas 16, 062106 2009.

    Article  ADS  Google Scholar 

  12. Larry A. Viehland and E. A. Mason, Ann. Phys. 91, 499 1975.

    Article  ADS  Google Scholar 

  13. R. D. White, R. E. Robson, S. Dujko, P. Nicoletopoulos, and B. Li, J. Phys. D: Appl. Phys. 42, 194001 2009.

    Article  ADS  Google Scholar 

  14. P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 1954.

    Article  ADS  MATH  Google Scholar 

  15. S. E. Frish and Yu. M. Kagan, Zh. Eksp. Teor. Fiz. 17, 577 1947.

    Google Scholar 

  16. D. Israel, K.-U. Riemann, and L. Tsendin, J. Appl. Phys. 99, 093303 2006.

    Article  ADS  Google Scholar 

  17. D. O’Connell, A. R. Zorat, A. R. Ellingboe, and M. M. Turner, Phys. Plasmas 14, 103510 2007.

    Article  ADS  Google Scholar 

  18. W. C. Chen, X. M. Zhu, S. Zhang, and Y. K. Pu, Appl. Phys. Lett. 94, 211503 2009.

    Article  ADS  Google Scholar 

  19. E. W. Mc Daniel and E. A. Mason, The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973).

    Google Scholar 

  20. E. E. Nikitin and B. M. Smirnov, Sov. Phys. Usp. 21, 95 1978.

    Article  ADS  Google Scholar 

  21. S. A. Maiorov, “Calculation of resonant charge exchange cross-sections for neon, argon, krypton, xenon, rubidium, caesium, and mercury ions,” in Proceedings of the 34th International Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2007, P–86.

    Google Scholar 

  22. B. M. Smirnov, Phys. Usp. 44, 221 2001.

    Article  ADS  Google Scholar 

  23. A. Dalgarno, D. R. Bates, Atomic and Molecular Procesess (Academic, New York, 1962).

    Google Scholar 

  24. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991).

    Book  Google Scholar 

  25. V. I. Demidov, N. B. Kolokolov, and A. A. Kudryavtsev, Probe Methods Research of Low Temperature Plasma (Energoatomizdat, Moscow, 1996).

    Google Scholar 

  26. V. A. Godyak and V. I. Demidov, J. Phys. D: Appl. Phys. 44, 233001(2011).

    Article  ADS  Google Scholar 

  27. V. F. Lapshin and A. S. Mustafaev, Sov. Phys. Tech. Phys. 34, 150 1989.

    Google Scholar 

  28. A. S. Mustafaev, Tech. Phys. 46, 472 2001.

    Article  Google Scholar 

  29. A. S. Mustafaev, A. P. Mezentsev, and V. Ya. Simonov, Sov. Phys. Tech. Phys. 29, 1263 1984.

    Google Scholar 

  30. L. M. Volkova, V. I. Demidov, N. B. Kolokolov, and E. A. Kral’kina, Teplofiz. Vys. Temp. 22, 757 1984.

    ADS  Google Scholar 

  31. H. M. Mott-Smith and Irving Langmuir, Phys. Rev. 28, 727 1926.

    Article  ADS  Google Scholar 

  32. Yu. A. Ivanov, Yu. A. Lebedev, and L. S. Polak, Methods of Contact Diagnostics in Non-Equilibrium Plasma Chemistry (Nauka, Moscow, 1981).

    Google Scholar 

  33. E. Berger and A. Heisen, J. Phys. D: Appl. Phys. 8, 629 1975.

    Article  ADS  Google Scholar 

  34. A. Hornbeck, Phys. Rev. 84, 615 1951.

    Article  ADS  Google Scholar 

  35. Frederick R. Kovar’t, Phys. Rev. A 133, 681 1964.

    Article  ADS  Google Scholar 

  36. R. Hegerbergt, M. T. Elford, and H. R. Skulleruds, J. Phys. B: At. Mol. Phys. 15, 797 1982.

    Article  ADS  Google Scholar 

  37. J. A. S. Barata and C. A. N. Conde, Nucl. Instrum. Methods Phys. Res. A 619, 21 2010.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mustafaev.

Additional information

Original Russian Text © A.S. Mustafaev, V.S. Sukhomlinov, M.A. Ainov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 60, No. 12, pp. 45–55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafaev, A.S., Sukhomlinov, V.S. & Ainov, M.A. Experimental and theoretical determination of the strongly anisotropic velocity distribution functions of ions in the intrinsic gas plasma in strong fields. Tech. Phys. 60, 1778–1789 (2015). https://doi.org/10.1134/S1063784215120142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215120142

Keywords

Navigation