Skip to main content
Log in

Infrared Photoreflectance of III–V Semiconductor Materials (Review)

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The photoreflectance method, i.e., a contactless version of optical modulation spectroscopy is applied to the study of the band structure features of single-crystal semiconductors, their doping level, composition of alloys, surface and interface energy band bendings. By the example of high-quality GaAs, the possibility of describing the photoreflectance spectral line shape within the one-electron and exciton models is demonstrated. An oscillating structure well described by exciton effects is detected in the spectra of ultrapure samples of this material. For III–V alloys, the results obtained by the photoreflectance method on the effect of the composition and temperature on the band gap and spin–orbit splitting are reviewed. The problem of Fermi-level determination (pinning) on the III–V crystal surface is considered. The currently developed method for measuring the photoreflectance in the mid-infrared region, i.e., the photomodulation Fourier transform infrared spectroscopy of reflectance is described in detail. It is shown that the crucial role in similar measurements is played by phase correction. Original results demonstrating the capability of this method in a wide wavelength range are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 2010).

    Book  MATH  Google Scholar 

  2. O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2004).

    Book  Google Scholar 

  3. M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.‑L. Aulombard, J. Appl. Phys. 80, 5352 (1996).

    Article  ADS  Google Scholar 

  4. J. Nukeaw, J. Yanagisawa, N. Matsubara, Y. Fujiwara, and Y. Takeda, Appl. Phys. Lett. 70, 84 (1997).

    Article  ADS  Google Scholar 

  5. J. S. Hwang, C. C. Chang, M. F. Chen, C. C. Chen, K. I. Lin, F. C. Tang, M. Hong, and J. Kwo, J. Appl. Phys. 94, 348 (2003).

    Article  ADS  Google Scholar 

  6. O. S. Komkov, A. N. Pikhtin, Yu. V. Zhilyaev, and L. M. Fedorov, Tech. Phys. Lett. 34, 37 (2008).

    Article  ADS  Google Scholar 

  7. X. Yin, H. M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Vac. Sci. Technol. A 10, 131 (1992).

    Article  ADS  Google Scholar 

  8. W. C. Hwang, Y. J. Cheng, Y. C. Wang, and J. S. Hwang, J. Vac. Sci. Technol. B 18, 1967 (2000).

    Article  Google Scholar 

  9. O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. Beard, and J. Comas, Appl. Phys. Lett. 46, 970 (1985).

    Article  ADS  Google Scholar 

  10. M. Cardona, in Advances in Solid State Physics, Ed. O. Madelung (Springer, Berlin, 1970), Vol. 10, p. 125.

    Google Scholar 

  11. D. E. Aspnes, in Handbook of Semiconductors, Ed. by M. Balkanski (North-Holland, Amsterdam, 1980), Vol. 2, p. 109.

    Google Scholar 

  12. F. H. Pollak and H. Shen, Mater. Sci. Eng. R 10, 275 (1993).

    Article  Google Scholar 

  13. J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec, Mater. Sci. 21, 263 (2003).

    Google Scholar 

  14. M. Cardona, Solid State Physics: Modulation Spectroscopy (Academic, New York, 1969).

    Google Scholar 

  15. V. A. Tyagai and O. V. Snitko, Electroreflectance of Light in Semiconductors (Nauk. Dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  16. F. H. Pollak, in Handbook of Semiconductors, Ed. by M. Balkanski (Elsevier Science B.V., Amsterdam, 1994), Vol. 2, p. 527.

    Google Scholar 

  17. B. E. Zendejas-Leal, Y. L. Casallas-Moreno, C. M. Yee-Rendon, G. I. González-Pedreros, J. Santoyo-Salazar, J. R. Aguilar-Hernández, C. Vázquez-López, S. Gallardo-Hernández, J. Huerta-Ruelas, and M. López-López, J. Appl. Phys. 128, 125706 (2020).

    Article  ADS  Google Scholar 

  18. M. Yu. Chernov, V. A. Solov’ev, O. S. Komkov, D. D. Firsov, A. D. Andreev, A. A. Sitnikova, and S. V. Ivanov, J. Appl. Phys. 58, 050923 (2020).

    Google Scholar 

  19. V. A. Vagin, M. A. Gershun, G. N. Zhizhin, and K. I. Tarasov, High-Aperture Spectral Devices, Ed. by K. I. Tarasov (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  20. A. I. Efimova, V. B. Zaitsev, N. Yu. Boldyrev, and P. K. Kashkarov, Optics: Fourier Transform Infrared Spectrometry (Yurait, Moscow, 2018) [in Russian].

    Google Scholar 

  21. A. N. Pikhtin and M. T. Todorov, Semiconductors 27, 628 (1993).

    ADS  Google Scholar 

  22. L. P. Avakyants, P. Yu. Bokov, and A. V. Chervyakov, Tech. Phys. 50, 1316 (2005).

    Article  Google Scholar 

  23. R. E. Nahory and J. L. Shay, Phys. Rev. Lett. 21, 1569 (1968).

    Article  ADS  Google Scholar 

  24. J. L. Shay, Phys. Rev. B 2, 803 (1970).

    Article  ADS  Google Scholar 

  25. T. Kanata, M. Matsunaga, H. Takakura, Y. Hamakawa, and T. Nishino, Pros. SPIE 1286, 56 (1990).

    Article  ADS  Google Scholar 

  26. T. Kanata, H. Suzawa, M. Matsunaga, H. Takakura, Y. Hamakawa, H. Kato, and T. Nishino, Phys. Rev. B 41, 2936 (1990).

    Article  ADS  Google Scholar 

  27. D. E. Aspnes, Surf. Sci. 37, 418 (1973).

    Article  ADS  Google Scholar 

  28. O. S. Komkov, A. N. Pikhtin, and Yu. V. Zhilyaev, Russ. Microelectron. 41, 508 (2012).

    Article  Google Scholar 

  29. Yu. V. Zhilyaev, N. K. Poletaev, V. M. Botnaryuk, T. A. Orlova, L. M. Fedorov, Sh. A. Yusupova, A. Owens, M. Bavdaz, A. Peacock, B. Omeara, and H. Heleva, Phys. Status Solidi C 0, 1024 (2003).

    Article  Google Scholar 

  30. D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605 (1973).

    Article  ADS  Google Scholar 

  31. P. J. Hughes, B. L. Weiss, and T. J. C. Hosea, J. Appl. Phys. 77, 6472 (1995).

    Article  ADS  Google Scholar 

  32. T. J. C. Hosea, Phys. Status Solidi B 189, 531 (1995).

    Article  ADS  Google Scholar 

  33. L. P. Avakyants, Doctoral (Phys.–Math.) Dissertation (Moscow State Univ., Moscow, 2010).

  34. O. S. Komkov, G. F. Glinskii, A. N. Pikhtin, and Y. K. Ramgolam, Phys. Status Solidi A 206, 842 (2009).

    Article  ADS  Google Scholar 

  35. V. A. Kiselev, B. V. Novikov, and A. E. Cherednichenko, Exciton Spectroscopy of the Near-Surface Region of Semiconductors (SPbGU, St. Petersburg, 2003), p. 110 [in Russian].

  36. E. G. Skaitis and V. I. Sugakov, Lit. Fiz. Sb. 14, 297 (1974) [in Russian].

    Google Scholar 

  37. D. F. Blossey, Phys. Rev. B 2, 3976 (1970).

    Article  ADS  Google Scholar 

  38. D. F. Blossey, Phys. Rev. B 3, 1382 (1971).

    Article  ADS  Google Scholar 

  39. G. F. Glinskii and Z. Koinov, Sov. J. Theor. Math. Phys. 70, 252 (1987).

    Article  Google Scholar 

  40. X. Yin, H. M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, Appl. Phys. Lett. 58, 260 (1991).

    Article  ADS  Google Scholar 

  41. R. Kuz’menko, A. Ganzha, E. P. Domashevskaya, V. Kircher, and S. Hildebrandt, Semiconductors 34, 1045 (2000).

    Article  ADS  Google Scholar 

  42. J. D. Dow, B. Y. Lao, and S. A. Newman, Phys. Rev. B 3, 2571 (1971).

    Article  ADS  Google Scholar 

  43. F. C. Weinstein, J. D. Dow, and B. Y. Lao, Phys. Rev. B 4, 3502 (1971).

    Article  ADS  Google Scholar 

  44. H. Shen and F. H. Pollak, Phys. Rev. B 42, 7097 (1990).

    Article  ADS  Google Scholar 

  45. O. S. Komkov, A. A. Moez, Yu. V. Zhilyaev, and A. N. Pikhtin, Izv. LETI, No. 15, Ser.: Fiz. Tverd. Tela El., No. 2, 48 (2005) [in Russian].

  46. S. V. Sorokin, P. S. Avdienko, I. V. Sedova, D. A. Ki-rilenko, V. Yu. Davydov, O. S. Komkov, D. D. Firsov, and S. V. Ivanov, Materials 13, 3447 (2020).

    Article  ADS  Google Scholar 

  47. O. S. Komkov, S. A. Khakhulin, D. D. Firsov, P. S. Avdienko, I. V. Sedova, and S. V. Sorokin, Semiconductors 54, 1198 (2020).

    Article  ADS  Google Scholar 

  48. Zh. I. Alferov, V. M. Andreev, V. I. Korol’kov, D. N. Tret’yakov, and V. M. Tuchkevich, Sov. Phys. Semicond. 1, 1313 (1967).

    Google Scholar 

  49. H. Rupprecht, J. M. Woodall, and G. D. Pettit, Appl. Phys. Lett. 11, 81 (1967).

    Article  ADS  Google Scholar 

  50. D. Huang, G. Ji, U. K. Reddy, H. Morkoç, F. Xiong, and T. A. Tombrello, J. Appl. Phys. 63, 5447 (1988).

    Article  ADS  Google Scholar 

  51. M. V. Konyaev, Cand. Sci. (Phys. Math.) Dissertation (SPbGETU, St. Petersburg, 1995).

  52. Zh. I. Alferov, V. M. Andreev, and A. A. Vodnev, Sov. Tech. Phys. Lett. 12, 450 (1986).

    Google Scholar 

  53. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  54. M. Sydor, J. Angelo, J. J. Wilson, W. C. Mitchel, and M. Y. Yen, Phys. Rev. B 40, 8473 (1989).

    Article  ADS  Google Scholar 

  55. G. Oelgart, R. Schwaber, M. Heider, and B. Jacobs, Semicond. Sci. Technol. 2, 468 (1987).

    Article  ADS  Google Scholar 

  56. P. Sitarek, J. Misiewicz, and E. Veje, Proc. SPIE 3725, 205 (1999).

    Article  ADS  Google Scholar 

  57. M. El Allali, C. B. Sorensen, E. Veje, and P. Tidemand-Petersson, Phys. Rev. B 48, 4398 (1993).

    Article  ADS  Google Scholar 

  58. H. Shen, M. Dutta, L. Fotiadis, P. G. Newman, R. P. Moerkirk, W. H. Chang, and R. N. Sacks, Appl. Phys. Lett. 57, 2118 (1990).

    Article  ADS  Google Scholar 

  59. C. Van Hoof, K. Deneffe, J. De Boeck, D. J. Arent, and G. Borghs, Appl. Phys. Lett. 54, 608 (1989).

    Article  ADS  Google Scholar 

  60. I. S. Han, J. S. Kim, S. K. Noh, and S. J. Lee, J. Korean Phys. Soc. 76, 1096 (2020).

    Article  ADS  Google Scholar 

  61. H. Shen, S. H. Pan, Z. Hang, J. Leng, F. H. Pollak, J. M. Woodall, and R. N. Sacks, Appl. Phys. Lett. 53, 1080 (1988).

    Article  ADS  Google Scholar 

  62. Y. P. Varshni, Physica (Amsterdam, Neth.) 34, 149 (1967).

  63. Z. Hang, D. Yan, F. H. Pollak, G. D. Pettit, and J. M. Woodall, Phys. Rev. B 44, 10546 (1991).

    Article  ADS  Google Scholar 

  64. D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, Appl. Phys. Lett. 56, 1269 (1990).

    Article  ADS  Google Scholar 

  65. Y. Ishitani, H. Hamada, Sh. Minagawa, H. Yaguchi, and Y. Shiraki, Jpn. J. Appl. Phys. 36 (11R), 6607 (1997).

    Article  ADS  Google Scholar 

  66. R. Ferrini, M. Geddo, G. Guizzetti, M. Patrini, S. Franchi, C. Bocchi, F. Germini, A. Baraldi, and R. Magnanini, J. Appl. Phys. 86, 4706 (1999).

    Article  ADS  Google Scholar 

  67. I. Guizani, H. Fitouri, I. Zaied, and A. Rebey, Phys. Solid State 62, 1060 (2020).

    Article  ADS  Google Scholar 

  68. V. L. Alperovich, A. S. Yaroshevich, H. E. Scheibler, and A. S. Terekhov, Phys. Status Solidi B 175, K35 (1993).

    Article  ADS  Google Scholar 

  69. V. L. Alperovich, A. S. Jaroshevich, H. E. Scheibler, and A. S. Terekhov, Solid-State Electron. 37, 657 (1994).

    Article  ADS  Google Scholar 

  70. R. Kuz’menko, A. Ganzha, J. Schreiber, and S. Hildebrandt, Phys. Solid State 39, 1900 (1997).

    Article  ADS  Google Scholar 

  71. O. S. Komkov and A. V. Kudrin, Semiconductors 51, 1420 (2017).

    Article  ADS  Google Scholar 

  72. R. Kudrawiec, J. Misiewicz, Q. Zhuang, A. M. R. Godenir, and A. Krier, Appl. Phys. Lett. 94, 151902 (2009).

    Article  ADS  Google Scholar 

  73. R. Kudrawiec, M. Latkowska, M. Baranowski, J. Misiewicz, L. H. Li, and J. C. Harmand, Phys. Rev. B 88, 125201 (2013).

    Article  ADS  Google Scholar 

  74. W. Zuraw, W. M. Linhart, J. Occena, T. Jen, J. W. Mitchell, R. S. Goldman, and R. Kudrawiec, A-ppl. Phys. Express 13, 091005 (2020).

    Article  ADS  Google Scholar 

  75. W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).

    Article  ADS  Google Scholar 

  76. R. Kudrawiec and W. Walukiewicz, J. Appl. Phys. 126, 141102 (2019).

    Article  ADS  Google Scholar 

  77. R. N. Bhattacharya, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts, and H. Aharoni, Phys. Rev. B 37, 4044 (1988).

    Article  ADS  Google Scholar 

  78. Z. Hang, H. Shen, and F. H. Pollak, Solid State Commun. 73, 15 (1990).

    Article  ADS  Google Scholar 

  79. P. Lautenschlager, M. Garriga, and M. Cardona, Phys. Rev. B 36, 4813 (1987).

    Article  ADS  Google Scholar 

  80. M. T. Todorov, Cand. Sci. (Phys. Math.) Dissertation (SPbETI, St. Petersburg, 1992).

  81. A. N. Pikhtin and M. T. Todorov, Key Eng. Mater. 65, 199 (1992).

    Article  Google Scholar 

  82. J. S. Hwang, W. Y. Chou, M. C. Hung, J. S. Wang, and H. H. Lin, J. Appl. Phys. 82, 3888 (1997).

    Article  ADS  Google Scholar 

  83. J. S. Hwang, W. Y. Chou, S. L. Tyan, H. H. Lin, and T. L. Lee, Appl. Phys. Lett. 67, 2350 (1995).

    Article  ADS  Google Scholar 

  84. L. P. Avakyants, P. Yu. Bokov, and A. V. Chervyakov, Semiconductors 39, 174 (2005).

    Article  ADS  Google Scholar 

  85. Akhmed Abdel Moez Abdel Rakhman Ezz, Cand. Sci. (Phys. Math.) Dissertation (SPbGETU, St. Petersburg, 2007).

  86. H. Piller, C. K. So, R. C. Whited, and B. J. Parsons, Surf. Sci. 37, 639 (1973).

    Article  ADS  Google Scholar 

  87. J. S. Hwang, S. L. Tyan, M. J. Lin, and Y. K. Su, Solid State Commun. 80, 891 (1991).

    Article  ADS  Google Scholar 

  88. S. Iyer, S. Mulugeta, W. Collis, S. Venkatraman, K. K. Bajaj, and G. Coli, J. Appl. Phys. 87, 2336 (2000).

    Article  ADS  Google Scholar 

  89. H.-J. Jo, M. G. So, J. S. Kim, and S. J. Lee, J. Korean Phys. Soc. 69, 826 (2016).

    Article  ADS  Google Scholar 

  90. O. S. Komkov, D. D. Firsov, V. A. Solov’ev, and S. V. Ivanov, in Proceedings of the 19th European Workshop on Molecular Beam Epitaxy (St. Petersburg, 2017), p. 95.

  91. D. D. Firsov, O. S. Komkov, V. A. Solov’ev, P. S. Kop’ev, and S. V. Ivanov, J. Phys. D 49, 285108 (2016).

    Article  Google Scholar 

  92. R. Kudrawiec, H. P. Nair, M. Latkowska, J. Misiewicz, S. R. Bank, and W. Walukiewicz, J. Appl. Phys. 112, 123513 (2012).

    Article  ADS  Google Scholar 

  93. C. H. Lin, K. E. Singer, J. H. Evans-Freeman, K. Heath, and M. Missous, Semicond. Sci. Technol. 12, 1619 (1997).

    Article  ADS  Google Scholar 

  94. M. Munoz, F. H. Pollak, M. B. Zakia, N. B. Patel, and J. L. Herrera-Perez, Phys. Rev. B 62, 16600 (2000).

    Article  ADS  Google Scholar 

  95. T. J. C. Hosea, M. Merrick, and B. N. Murdin, Phys. Status Solidi A 202, 1233 (2005).

    Article  ADS  Google Scholar 

  96. M. V. Tonkov, Soros. Obrazov. Zh. 7, 83 (2001) [in Russian].

    Google Scholar 

  97. T. J. Johnson and G. Zachmann, Introduction to Step-Scan FTIR (Bruker Optik, Ettlingen, 2005).

  98. H. Shen, F. H. Pollak, J. M. Woodall, and R. N. Sacks, J. Vac. Sci. Technol. B 7, 804 (1989).

    Article  Google Scholar 

  99. J. Shao, F. Yue, X. Lü, W. Lu, W. Huang, Zh. Li, Sh. Guo, and J. Chu, Appl. Phys. Lett. 89, 182121 (2006).

    Article  ADS  Google Scholar 

  100. M. Motyka, G. Sęk, J. Misiewicz, A. Bauer, M. Dallner, S. Höfling, and A. Forchel, Appl. Phys. Express 2, 126505 (2009).

    Article  ADS  Google Scholar 

  101. J. Shao, W. Lu, F. Yue, X. Lü, W. Huang, Zh. Li, Sh. Guo, and J. Chu, Rev. Sci. Instrum. 78, 013111 (2007).

    Article  ADS  Google Scholar 

  102. O. S. Komkov, D. D. Firsov, A. D. Andreev, M. Yu. Chernov, V. A. Solov’ev, and S. V. Ivanov, Jpn. J. Appl. Phys. 58, 050923 (2019).

    Article  ADS  Google Scholar 

  103. L.-L. Ma, J. Shao, X. Lü, S.-L. Guo, and W. Lu, Chin. Phys. Lett. 28, 047801 (2011).

    Article  ADS  Google Scholar 

  104. O. S. Komkov, D. D. Firsov, T. V. Lvova, I. V. Sedova, A. N. Semenov, V. A. Solov’ev, and S. V. Ivanov, Phys. Solid State 58, 2394 (2016).

    Article  ADS  Google Scholar 

  105. A. O. Mihin, D. D. Firsov, and O. S. Komkov, J. Phys.: Conf. Ser. 1695, 012111 (2020).

    Google Scholar 

  106. J. L. Shay, R. E. Nahory, and C. K. N. Patel, Phys. Rev. 184, 809 (1969).

    Article  ADS  Google Scholar 

  107. D. Auvergne, J. Camassel, H. Mathieu, and A. Joullie, J. Phys. Chem. Solids 35, 133 (1974).

    Article  ADS  Google Scholar 

  108. D. D. Firsov and O. S. Komkov, Tech. Phys. Lett. 39, 1071 (2013).

    Article  ADS  Google Scholar 

  109. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, Hoboken, NJ, 2007).

    Book  Google Scholar 

  110. L. Mertz, Transformations in Optics (Wiley, New York, 1965).

    Google Scholar 

  111. M. L. Forman, W. H. Steel, and G. A. Vanasse, J. Opt. Soc. Am. 56, 59 (1966).

    Article  ADS  Google Scholar 

  112. M. S. Hutson and M. S. Braiman, Appl. Spectrosc. 52, 974 (1998).

    Article  ADS  Google Scholar 

  113. R. M. Balagula, M. Ya. Vinnichenko, I. C. Makhov, D. A. Firsov, and L. E. Vorobjev, Semiconductors 50, 1425 (2016).

    Article  ADS  Google Scholar 

  114. V. A. Solov’ev, I. V. Sedova, T. V. Lvova, M. V. Lebedev, P. A. Dement’ev, A. A. Sitnikova, A. N. Semenov, and S. V. Ivanov, Appl. Surf. Sci. 356, 378 (2015).

    Article  ADS  Google Scholar 

  115. O. S. Komkov, D. D. Firsov, A. N. Semenov, B. Ya. Mel’tser, S. I. Troshkov, A. N. Pikhtin, and S. V. Ivanov, Semiconductors 47, 292 (2013).

    Article  ADS  Google Scholar 

  116. O. S. Komkov, D. D. Firsov, E. A. Kovalishina, and A. S. Petrov, Russ. Microelectron. 44, 575 (2015).

    Article  Google Scholar 

  117. O. S. Komkov, D. D. Firsov, T. V. Lvova, I. V. Sedova, V. A. Solov’ev, A. N. Semenov, and S. V. Ivanov, J. Commun. Technol. Electron. 63, 289 (2018).

    Article  Google Scholar 

  118. T. V. Lvova, A. L. Shakhmin, I. V. Sedova, and M. V. Lebedev, Appl. Surf. Sci. 311, 300 (2014).

    Article  ADS  Google Scholar 

  119. T. V. Lvova, M. S. Dunaevskii, M. V. Lebedev, A. L. Shakhmin, I. V. Sedova, and S. V. Ivanov, Semiconductors 47, 721 (2013).

    Article  ADS  Google Scholar 

  120. N. Kallergi, B. Roughani, J. Aubel, and S. Sundaram, J. Appl. Phys. 68, 4656 (1990).

    Article  ADS  Google Scholar 

  121. P. D. C. King, T. D. Veal, C. F. McConville, J. Zúniga-Pérez, V. Muñoz-Sanjosé, M. Hopkinson, E. D. L. Rienks, M. F. Jensen, and Ph. Hofmann, Phys. Rev. Lett. 104, 256803 (2010).

    Article  ADS  Google Scholar 

  122. R. Kudrawiec, T. Suski, J. Serafińczuk, J. Misiewicz, D. Muto, and Y. Nanishi, Appl. Phys. Lett. 93, 131917 (2008).

    Article  ADS  Google Scholar 

  123. K.-I. Lin, Y.-J. Chen, Y.-Ch. Cheng, and Sh. Gwo, Jpn. J. Appl. Phys. 54, 031001 (2015).

    Article  ADS  Google Scholar 

  124. K.-I. Lin, J.-T. Tsai, I-Ch. Su, J.-Sh. Hwang, and Sh. Gwo, Appl. Phys. Express 4, 112601 (2011).

    Article  ADS  Google Scholar 

  125. D. D. Firsov, O. S. Komkov, V. A. Solov’ev, A. N. Semenov, and S. V. Ivanov, J. Opt. Soc. Am. B 36, 910 (2019).

    Article  ADS  Google Scholar 

  126. M. Merrick, T. J. C. Hosea, B. N. Murdin, T. Ashley, L. Buckle, and T. Burke, AIP Conf. Proc. 772, 295 (2005).

    Article  ADS  Google Scholar 

  127. A. Lindsay and E. P. O’Reilly, Solid State Commun. 112, 443 (1999).

    Article  ADS  Google Scholar 

  128. W. M. Linhart, M. K. Rajpalke, J. Buckeridge, P. A. E. Murgatroyd, J. J. Bomphrey, J. Alaria, C. R. A. Catlow, D. O. Scanlon, M. J. Ashwin, and T. D. Veal, Appl. Phys. Lett. 109, 132104 (2016).

    Article  ADS  Google Scholar 

  129. S. A. Cripps, T. J. C. Hosea, A. Krier, V. Smirnov, P. J. Batty, Q. D. Zhuang, H. H. Lin, P.-W. Liu, and G. Tsai, Appl. Phys. Lett. 90, 172106 (2007).

    Article  ADS  Google Scholar 

  130. S. Wei and A. Zunger, Phys. Rev. B 39, 6279 (1989).

    Article  ADS  Google Scholar 

  131. S. A. Cripps, T. J. C. Hosea, A. Krier, V. Smirnov, P. J. Batty, Q. D. Zhuang, H. H. Lin, P.-W. Liu, and G. Tsai, Thin Solid Films 516, 8049 (2008).

    Article  ADS  Google Scholar 

  132. M. Motyka, M. Dyksik, F. Janiak, K. D. Moiseev, and J. Misiewicz, J. Phys. D 47, 285102 (2014).

    Article  Google Scholar 

  133. M. Motyka, F. Janiak, G. Sęk, J. Misiewicz, and K. D. Moiseev, Appl. Phys. Lett. 100, 211906 (2012).

    Article  ADS  Google Scholar 

  134. A. M. Filachev, I. I. Taubkin, and M. A. Trishenkov, Solid-State Photoelectronics. Photodiodes (Fizmatkniga, Moscow, 2011) [in Russian].

    Google Scholar 

  135. R. Kudrawiec, M. Latkowska, J. Misiewicz, Q. Zhuang, A. M. R. Godenir, and A. Krier, Appl. Phys. Lett. 99, 011904 (2011).

    Article  ADS  Google Scholar 

  136. D. D. Firsov, O. S. Komkov, V. A. Solov’ev, A. N. Semenov, and S. V. Ivanov, J. Phys.: Conf. Ser. 917, 062025 (2017).

    Google Scholar 

  137. A. N. Semenov, B. Ya. Meltser, V. A. Solov’ev, T. A. Komissarova, A. A. Sitnikova, D. A. Kirilenko, A. M. Nadtochii, T. V. Popova, P. S. Kop’ev, and S. V. Ivanov, Semiconductors 45, 1327 (2011).

    Article  ADS  Google Scholar 

  138. O. S. Komkov, D. D. Firsov, A. N. Pikhtin, A. N. Semenov, B. Ya. Meltser, V. A. Solov’ev, and S. V. Ivanov, AIP Conf. Proc. 1416, 184 (2011).

    Article  ADS  Google Scholar 

  139. O. S. Komkov, A. N. Semenov, D. D. Firsov, B. Ya. Meltser, V. A. Solov’ev, T. V. Popova, A. N. Pikhtin, and S. V. Ivanov, Semiconductors 45, 1425 (2011).

    Article  ADS  Google Scholar 

  140. S. Adachi, Properties of Semiconductor Alloys. Group-IV, III–V and II–VI Semiconductors (Wiley, New York, 2009).

    Google Scholar 

  141. S. Isomura, F. G. D. Prat, and J. C. Woolley, Phys. Status Solidi B 65, 213 (1974).

    Article  ADS  Google Scholar 

  142. N. Dai, F. Brown, R. E. Dozeema, S. J. Chung, K. J. Goldammer, and M. B. Santos, Appl. Phys. Lett. 73, 3132 (1998).

    Article  ADS  Google Scholar 

  143. V. A. Solov’ev, M. Yu. Chernov, O. S. Komkov, D. D. Firsov, A. A. Sitnikova, and S. V. Ivanov, JETP Lett. 109, 377 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Komkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komkov, O.S. Infrared Photoreflectance of III–V Semiconductor Materials (Review). Phys. Solid State 63, 1181–1204 (2021). https://doi.org/10.1134/S1063783421080126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421080126

Keywords:

Navigation