Skip to main content
Log in

Graphene Oxide/Iron Oxide (GrO/FeOx) Nanocomposites for Biomedicine: Synthesis and Study

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The properties and structure of magnetic graphene oxide GrO/iron oxide FeOx nanocomposites synthesized by the mechanochemical method with different content of components GrO : FeOx (wt %), namely, 20 : 80, 50 : 50, and 80 : 20 were studied. The method of mechanochemical synthesis is a mechanical process of grinding iron oxide powder together with graphene oxide in a ball mill in an aqueous medium. The synthesized magnetic GrO/FeOx nanocomposites were studied by Raman spectroscopy, a vibrating sample magnetometer, and Mössbauer spectroscopy. The Mössbauer studies made it possible to determine the phase composition and structure of the synthesized magnetic GrO/FeOx nanocomposites. The data of Mössbauer spectroscopy showed that the GrO/FeOx composites consist of the magnetite phase Fe3O4 and magnetic nanoparticles in the paramagnetic state, which is consistent with the data of X-ray diffraction studies. Based on the results of Mössbauer spectroscopy, it was found that, in addition to magnetite, the magnetic GrO/FeOx nanocomposites contain hematite α-Fe2O3, as well as phases identified as iron carbides and iron-depleted carbon clusters. The latter were not detected by X-ray diffraction, apparently because their number is insignificant and they are in an amorphous state. The results obtained show that graphene is not just a source of carbon during grinding in a ball mill, but has its own reactivity and the ability to generate new phases during mechanochemical activation. Based on the performed Mössbauer spectral studies, we obtained unique and important information on the magnetic structure of the magnetic GrO/FeOx nanocomposites. The research results make it possible to explain the magnetic properties of magnetic nanocomposites, GrO/magnetic particles, which is important for the development and graphene oxide-based synthesis of high-performance magnetic nanocomposites for various applications, including biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Handbook of Nanomaterials for Industrial Applications, Ed. by Ch. M. Hussain (Elsevier, Amsterdam, 2018).

  2. N. Ajinkya, X. Yu, P. Kaithal, H. Luo, P. Somani, and S. Ramakrishna, Materials 13, 4644 (2020).

    Article  ADS  Google Scholar 

  3. V. Socoliuc, D. Peddis, V. I. Petrenko, M. V. Avdeev, D. Susan-Resiga, T. Szabó, R. Turcu, E. Tombácz, and L. Vékás, Magnetochemistry 2, 2 (2019).

    Google Scholar 

  4. N. V. S. Vallabani, S. Singh, and A. S. Karakoti, Curr. Drug Metabolism 20, 457 (2019).

    Article  Google Scholar 

  5. E. Myrovali, N. Maniotis, T. Samaras, and M. Angelakeris, Nanoscale Adv. 2, 408 (2020).

    Article  ADS  Google Scholar 

  6. A. G. Roca, L. Gutiérrez, H. Gavilána, M. E. F. Brollo, S. Veintemillas-Verdaguer, and M. del Puerto Morales, Adv. Drug Deliv. Rev. 138, 68 (2019).

    Article  Google Scholar 

  7. I. M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, and C. V. V. Muralee Gopi, Magnetochemistry 5, 67 (2019).

    Article  Google Scholar 

  8. A. S. Kamzin, I. M. Obaidat, A. A. Valliulin, V. G. Semenov, and I. A. Al-Omari, Phys. Solid State 62, 1933 (2020);

    Article  ADS  Google Scholar 

  9. A. S. Kamzin, I. M. Obaidat, A. A. Valliulin, V. G. Semenov, and I. A. Al-Omari, Phys. Solid State 62, 2167 (2020).

    Article  ADS  Google Scholar 

  10. K. Simeonidis, C. Martinez-Boubeta, D. Serantes, S. Ruta, O. Chubykalo-Fesenko, R. Chantrell, J. Oro-Sole, L. Balcells, A. S. Kamzin, R. A. Nazipov, A. Makridis, and M. Angelakeris, ACS Appl. Nano Mater. 3, 4465 (2020).

    Google Scholar 

  11. S. Zhao, X. Yu, Y. Qian, W. Chen, and J. Shen, Theranostics 10, 6279 (2020).

    Google Scholar 

  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  13. D. Chen, H. Feng, and J. Li, Chem. Rev. 112, 6027 (2012).

    Article  Google Scholar 

  14. I. S. Lyubutin, A. O. Baskakov, S. S. Starchikov, K.‑Y. Shih, C.-R. Lin, Y.-T. Tseng, S.-S. Yang, Z.‑Y. Han, Yu. L. Ogarkova, V. I. Nikolaichik, and A. S. Avilov, Mater. Chem. Phys. 219, 411 (2018).

    Article  Google Scholar 

  15. S. Gurunathan and J.-H. Kim, Int. J. Nanomed. 11, 1927 (2016).

    Article  Google Scholar 

  16. P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, Chem. Rev. 115, 2483 (2015).

    Article  Google Scholar 

  17. S. M. Mousavi, S. A. Hashemi, Y. Ghasemi, A. M. Amani, A. Babapoor, and O. Arjmand, Drug Metabolism Rev. 51, 12 (2019).

    Article  Google Scholar 

  18. B. Thapa, D. Diaz-Diestra, D. Badillo-Diaz, R. K. Sharma, K. Dasari, S. Kumari, M. B. Holcomb, J. Beltran-Huarac, B. R. Weiner, and G. Morell, Sci. Rep. 9, 5633 (2019).

    Article  ADS  Google Scholar 

  19. V. Narayanaswamy, I. M. Obaidat, A. S. Kamzin, S. Latiyan, S. Jain, H. Kumar, C. Srivastava, S. Alaabed, and B. Issa, Int. J. Mol. Sci. 20, 3368 (2019).

    Article  Google Scholar 

  20. E. Peng, E. S. G. Choo, P. Chandrasekharan, C. T. Yang, J. Ding, K. H. Chuang, and J. M. Xue, Small 8, 3620 (2012).

    Article  Google Scholar 

  21. H. P. Cong, J. J. He, Y. Lu, and S. H. Yu, Small 6, 169 (2010).

    Article  Google Scholar 

  22. X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, and Y. Chen, J. Mater. Chem. 19, 2710 (2009).

    Article  Google Scholar 

  23. F. Li, Y. Huang, K. Huang, J. Lin, and P. Huang, Int. J. Mol. Sci. 21, 390 (2020).

    Article  Google Scholar 

  24. S. A. Makharza, G. Cirillo, O. Vittorio, E. Valli, F. Voli, A. Farfalla, M. Curcio, F. Iemma, F. P. Nicoletta, A. A. El-Gendy, G. F. Goya, and S. Hampel, Pharmaceuticals 19, 76 (2019).

    Article  Google Scholar 

  25. K. Mahmoudi, A. Bouras, D. Bozec, R. Ivkov, and C. Hadjipanayis, Int. J. Hypertherm. 34, 1316 (2018).

    Article  Google Scholar 

  26. M. Sorescu and M. Allwes, MRS Adv. 4, 155 (2019).

    Article  Google Scholar 

  27. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  28. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  29. T. P. Yadav, R. M. Yadav, and D. P. Singh, Nanosci. Nanotechnol. 2, 22 (2012).

    Article  Google Scholar 

  30. K. Zhu, Y. Ju, J. Xu, Z. Yang, S. Gao, and Y. Hou, Acc. Chem. Res. 51, 404 (2018).

    Article  Google Scholar 

  31. C. Ding, S. Ni, and Z. Chen, China Particuol. 5, 357 (2007).

    Article  Google Scholar 

  32. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012);

    Article  ADS  Google Scholar 

  33. M. E. Matsnev, and V. S. Rusakov, AIP Conf. Proc. 1622, 40 (2014).

    Article  ADS  Google Scholar 

  34. N. Venkatesha, P. Poojar, Y. Qurishi, S. Geethanath, and C. Srivastava, J. Appl. Phys. 117, 154702 (2015).

    Article  ADS  Google Scholar 

  35. V. Narayanaswamy, H. Kumar, C. Srivastava, S. Alaabed, M. Aslam, A. Mallya, and I. Obaidat, Mater. Express 10, 314 (2020).

    Article  Google Scholar 

  36. A. L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  ADS  Google Scholar 

  37. A. Kaniyoor and S. Ramaprabhu, AIP Adv. 2, 032183 (2012).

    Article  ADS  Google Scholar 

  38. R. N. Panda, N. S. Gajbhiye, and G. Balaji, J. Alloys Compd. 326, 50 (2001).

    Article  Google Scholar 

  39. S. Mørup, E. Brok, and C. Frandsen, J. Nanomater. 2013, 720629 (2013).

    Article  Google Scholar 

  40. A. S. Kamzin, A. Bingolbali, N. Dogan, Z. Yesil, and M. Asilturk, Tech. Phys. Lett. 45, 1008 (2019).

    Article  ADS  Google Scholar 

  41. J. Smit and H. P. J. Wijn, Ferrites (Wiley, New York, 1959).

    Google Scholar 

  42. E. Murad and J. H. Johnston, in Mossbauer Spectroscopy Applied to Inorganic Chemistry, Ed. by G. J. Long (Plenum, New York, 1987), Vol. 2, p. 507.

    Google Scholar 

  43. M. Starowicz, P. Starowicz, J. Zukrowski, J. Przewoznik, A. Lemanski, C. Kapusta, and J. Banas, J. Nanopart. Res. 13, 7167 (2011).

    Article  ADS  Google Scholar 

  44. S. J. Oh, D. C. Cook, and H. E. Townsend, Hyperfine Interact. 112, 59 (1998).

    Article  ADS  Google Scholar 

  45. V. Chlan, J. Żukrowski, A. Bosak, Z. Kakol, A. Kozłowski, Z. Tarnawski, R. Řezníček, H. Štěpánková, P. Novák, L. Biało, and J. M. Honig, Phys. Rev. B 98, 125138 (2018).

    Article  ADS  Google Scholar 

  46. F. van der Woude, and G. A. Sawatzky, Phys. Rev. B 4, 3159 (1971).

    Article  ADS  Google Scholar 

  47. I. N. Zakharova, M. A. Shipilin, V. P. Alekseev, and A. M. Shipilin, Tech. Phys. Lett. 38, 55 (2012).

    Article  ADS  Google Scholar 

  48. R. L. Arents, Yu. V. Maksimov, I. P. Suzdalev, V. K. Imshennik, and Yu. F. Krupyanskii, Fiz. Met. Metalloved. 36, 277 (1973).

    Google Scholar 

  49. P. Matteazzi and G. le Caer, J. Am. Ceram. Soc. 74, 1382 (1991).

    Article  Google Scholar 

  50. V. A. Barinov, V. A. Tsurin, V. A. Kazantsev, and V. T. Surikov, Phys. Met. Metallogr. 115, 53 (2014).

    Article  ADS  Google Scholar 

  51. M. Sorescu and R. Trotta, MRC Adv. 1, 221 (2015).

  52. K. Loizou, S. Mourdikoudis, A. Sergides, M. O. Besenhard, C. Sarafidis, K. Higashimine, O. Kalogirou, S. Maenosono, N. Thi, K. Thanh, and A. Gavriilidis, ACS Appl. Mater. Interfaces 12, 28520 (2020).

    Article  Google Scholar 

  53. X. W. Liu, S. Zhao, Y. Meng, Q. Peng, A. K. Dearden, C. F. Huo, Y. Yang, Y. W. Li, and X. D. Wen, Sci. Rep. 6, 26184 (2016).

    Article  ADS  Google Scholar 

  54. G. Schinteie, V. Kuncser, P. Palade, F. Dumitrache, R. Alexandrescu, I. Morjan, and G. Filoti, J. Alloys Compd. 564, 27 (2013).

    Article  Google Scholar 

  55. F. Dumitrache, I. Morjan, C. Fleacaa, R. Birjega, E. Vasile, V. Kuncser, and R. Alexandrescu, Appl. Surf. Sci. 257, 5265 (2011).

    Article  ADS  Google Scholar 

  56. H. Khurshid, Y. A. Abdu, E. Devlin, B. A. Issa, and G. C. Hadjipanayis, RSC Adv. 10, 28958 (2020).

  57. X. W. Liu, Z. Cao, S. Zhao, R. Gao, Y. Meng, J. X. Zhu, C. Rogers, C. F. Huo, Y. Yang, Y. W. Lim, and X. D. Wen, J. Phys. Chem. C 121, 21390 (2017).

    Article  Google Scholar 

  58. S. V. Lomaeva, Phys. Met. Metallogr. 104, 388 (2007).

    Article  ADS  Google Scholar 

  59. E. P. Elsukov, G. A. Dorofeev, V. M. Fomin, G. N. Konygin, A. V. Zagainov, and A. N. Maratkanova, Phys. Met. Metallogr. 94, 356 (2002).

    Google Scholar 

  60. E. Bauer-Grosse and G. le Caër, Philos. Mag. 56, 485 (1987).

    Article  ADS  Google Scholar 

  61. I. S. Lyubutin, C.-R. Lin, Y.-T. Tseng, A. Spivakov, A. O. Baskakov, S. S. Starchikov, K. O. Funtov, C.‑J. Jhang, Y.-J. Tsai, and H.-S. Hsu, Mater. Charact. 150, 213 (2019).

    Article  Google Scholar 

  62. J. Yu, F. Chen, W. Gao, Y. Ju, X. Chu, S. Che, F. Sheng, and Y. Hou, Nanoscale Horiz. 2, 81 (2017).

    Article  ADS  Google Scholar 

  63. A. Bordet, R. F. Landis, Y. W. Lee, G. Y. Tonga, J. M. Asensio, C. H. Li, P.-F. Fazzini, K. Soulantica, V. M. Rotello, and B. Chaudret, ACS Nano 13, 2870 (2019).

    Article  Google Scholar 

  64. A. Gangwar, S. S. Varghese, S. S. Meena, C. L. Prajapat, N. Gupta, and N. K. Prasad, J. Magn. Magn. Mater. 481, 251 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

I.M. Obaidat and I.A. Al-Omari are grateful for the financial support of the UAEU Advanced Research Program (UPAR), grant no. 31S364.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzin, A.S., Obaidat, I.M., Kozlov, V.S. et al. Graphene Oxide/Iron Oxide (GrO/FeOx) Nanocomposites for Biomedicine: Synthesis and Study. Phys. Solid State 63, 856–865 (2021). https://doi.org/10.1134/S1063783421060123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421060123

Keywords:

Navigation