Skip to main content
Log in

Nature of the Pseudogap Phase of HTSC Cuprates

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The pseudogap phase of HTSC cuprates is associated with the formation of a system of quantum electron–hole (EH) dimers similar to the Anderson RVB phase. A specific role of the electron–lattice relaxation in the formation of metastable EH dimers in cuprates with the T and T  ' structures is considered. An effective spin–pseudospin Hamiltonian of the CuO2 plane of cuprate is introduced in the model of charge triplets and S = 1 the pseudospin formalism. In the molecular-field approximation (MFA), for the coordinate representation, the main MFA phases have been found: antiferromagnetic insulator, charge density wave, boson superconductor with the d-symmetry of the order parameter, and two metallic Fermi-phases that form the “strange”-metal phase. MFA is shown to enable, as a whole, a proper description of the features of the phase diagrams typical of cuprates. As in the case of typical s = 1/2 quantum antiferromagnet, the actually observed cuprate phases such as the charge ordering and the superconductivity reflect a “physical” ground state close to MFA phases but with strongly reduced values of local order parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Rev. Mod. Phys. 87, 457 (2015).

    Article  ADS  Google Scholar 

  2. V. Sacksteder, J. Supercond. Nov. Magn. 33, 43 (2020).

    Article  Google Scholar 

  3. K. K. Gomes, A. N. Pasupathy, A. Pushp, S. Ono, Y. Ando, and A. Yazdani, Nature (London, U.K.) 447, 569 (2007).

    Article  ADS  Google Scholar 

  4. T. Honma and P. H. Hor, Phys. C (Amsterdam, Neth.) 509, 11 (2015).

  5. Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).

    Article  ADS  Google Scholar 

  6. N. Barišić, M. K. Chan, M. J. Veit, C. J. Dorow, Y. Ge, Y. Li, W. Tabis, Y. Tang, G. Yu, X. Zhao, and M. Greven, New J. Phys. 21, 113007 (2019).

    Article  ADS  Google Scholar 

  7. S. H. Joo, J.-J. Kim, J. H. Yoo, M. S. Park, K. S. Lee, G. Gu, and J. Lee, Nano Lett. 19, 1112 (2019).

    Article  ADS  Google Scholar 

  8. A. S. Moskvin, Phys. Rev. B 84, 075116 (2011).

    Article  ADS  Google Scholar 

  9. A. S. Moskvin, JETP Lett. 96, 385 (2012).

    Article  ADS  Google Scholar 

  10. A. S. Moskvin, A. A. Gippius, A. V. Tkachev, A. V. Mahajan, T. Chakrabarty, I. A. Presniakov, A. V. Sobolev, and G. Demazeau, Phys. Rev. B 86, 241107(R) (2012).

  11. A. S. Moskvin, Phys. Met. Metallogr. 120, 1252 (2019).

    Article  ADS  Google Scholar 

  12. A. S. Moskvin, J. Phys.: Condens. Matter 25, 085601 (2013).

    ADS  Google Scholar 

  13. A. S. Moskvin and Yu. D. Panov, Phys. Solid State 61, 1553 (2019).

    Article  ADS  Google Scholar 

  14. D. Reagor, E. Ahrens, S. W. Cheong, A. Migliori, and Z. Fisk, Phys. Rev. Lett. 62, 2048 (1989).

    Article  ADS  Google Scholar 

  15. B. P. P. Mallett, T. Wolf, E. Gilioli, F. Licci, G. V. M. Williams, A. B. Kaiser, N. W. Ashcroft, N. Suresh, and J. L. Tallon, Phys. Rev. Lett. 111, 237001 (2013).

    Article  ADS  Google Scholar 

  16. A. S. Moskvin, R. Neudert, M. Knupfer, J. Fink, and R. Hayn, Phys. Rev. B 65, 180512(R) (2002).

  17. A. S. Moskvin, J. Málek, M. Knupfer, R. Neudert, J. Fink, R. Hayn, S.-L. Drechsler, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 91, 037001 (2003).

    Article  ADS  Google Scholar 

  18. A. S. Moskvin, Phys. Solid State 61, 693 (2019).

    Article  ADS  Google Scholar 

  19. R. V. Pisarev, V. V. Pavlov, A. M. Kalashnikova, and A. S. Moskvin, Phys. Rev. B 82, 224502 (2010).

    Article  ADS  Google Scholar 

  20. S. Larsson, Phys. C (Amsterdam, Neth.) 460462, 1063 (2007).

  21. S. Larsson, J. Supercond. Nov. Magn. 30, 275 (2017).

    Article  Google Scholar 

  22. R. A. Marcus, Ann. Rev. Phys. Chem. 15, 155 (1964).

    Article  ADS  Google Scholar 

  23. L. P. Gorkov and G. B. Teitelbaum, Phys. Rev. Lett. 97, 247003 (2006).

    Article  ADS  Google Scholar 

  24. L. P. Gorkov and G. B. Teitelbaum, J. Phys.: Conf. Ser. 108, 12009 (2008).

    Google Scholar 

  25. M. Naito, Y. Krockenberger, A. Ikeda, and H. Yamamoto, Phys. C (Amsterdam, Neth.) 523, 28 (2016).

  26. P. W. Anderson, Science (Washington, DC, U. S.) 235, 1196 (1987).

    Article  ADS  Google Scholar 

  27. S. Ono, S. Komiya, and Y. Ando, Phys. Rev. B 75, 024515 (2007).

    Article  ADS  Google Scholar 

  28. T. Honma and P. H. Hor, Phys. Rev. B 77, 184520 (2008).

    Article  ADS  Google Scholar 

  29. S. A. Kivelson and S. Lederer, Proc. Natl. Acad. Sci. U.S.A. 116, 14395 (2019).

    Article  ADS  Google Scholar 

  30. N. Auvray, B. Loret, S. Benhabib, M. Cazayous, R. D. Zhong, J. Schneeloch, G. D. Gu, A. Forget, D. Colson, I. Paul, A. Sacuto, and Y. Gallais, Nat. Commun. 10, 5209 (2019).

    Article  ADS  Google Scholar 

  31. N. P. Armitage, P. Fournier, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010).

    Article  ADS  Google Scholar 

  32. A. S. Moskvin, J. Phys.: Conf. Ser. 592, 012076 (2015);

    Google Scholar 

  33. J. Exp. Theor. Phys.121, 477 (2015).

  34. A. S. Moskvin and Yu. D. Panov, J. Supercond. Nov. Magn. 32, 61 (2019).

    Article  Google Scholar 

  35. Yu. D. Panov, Phys. Met. Metallogr. 120, 1276 (2019).

    Article  ADS  Google Scholar 

  36. L. G. Caron and G. W. Pratt, Rev. Mod. Phys. 40, 802 (1968).

    Article  ADS  Google Scholar 

  37. D. R. Harshman, J. D. Dow, and A. T. Fiory, Philos. Mag. 91, 818 (2011).

    Article  ADS  Google Scholar 

  38. M. H. Hamidian, S. D. Edkins, C. K. Kim, J. C. Davis, A. P. Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E.-A. Kim, S. Sachdev, and K. Fujita, Nat. Phys. 12, 150 (2016).

    Article  Google Scholar 

  39. R. Arpaia, S. Caprara, R. Fumagalli, G. De Vecchi, Y. Y. Peng, E. Andersson, D. Betto, G. M. De Luca, N. B. Brookes, F. Lombardi, M. Salluzzo, L. Braicovich, C. Di Castro, M. Grilli, and G. Ghiringhelli, Science (Washington, DC, U. S.) 365, 906 (2019).

    Article  ADS  Google Scholar 

  40. J. Wu, A. T. Bollinger, Y. Sun, and I. Bozovic, J. Supercond. Nov. Magn. 30, 1073 (2017).

    Article  Google Scholar 

  41. I. Bozovic, X. He, J. Wu, and A. T. Bollinger, Nature (London, U.K.) 536, 309 (2016).

    Article  ADS  Google Scholar 

  42. Y. Kharkov and O. Sushkov, Sci. Rep. 6, 34551 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.Yu. Irkhin for the stimulating discussions.

Funding

This work was supported by the Government of the Russian Federation (Program 211, Agreement no. 02.A03.21. 0006) and the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2020-0054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moskvin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.S., Panov, Y.D. Nature of the Pseudogap Phase of HTSC Cuprates. Phys. Solid State 62, 1554–1561 (2020). https://doi.org/10.1134/S1063783420090206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090206

Keywords:

Navigation