Skip to main content
Log in

Model of the Behavior of a Granular HTS in an External Magnetic Field: Temperature Evolution of the Magnetoresistance Hysteresis

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A model for describing the magnetoresistance behavior in a granular high-temperature superconductor (HTS) that has been developed in the last decade explains a fairly extraordinary form of the hysteretic R(H) dependences at T = const and their hysteretic features, including the local maximum, the negative magnetoresistance region, and the local minimum. In the framework of this model, the effective field Beff in the intergrain medium has been considered, which represents a superposition of the external field and the field induced by the magnetic moments of HTS grains. This field can be written in the form Beff(H) = H + 4παM(H), where M(H) is the experimental field dependence of the magnetization and α is the parameter of crowding of the magnetic induction lines in the intergrain medium. Therefore, the magnetoresistance is a function of not simply an external field, but also the “internal” effective field R(H) = f(Beff(H)). The magnetoresistance of the granular YBa2Cu3O7 – δ HTS has been investigated in a wide temperature range. The experimental hysteretic R(H) dependences obtained in the high -temperature range (77–90 K) are well explained using the developed model and the parameter α is 20–25. However, at a temperature of 4.2 K, no local extrema are observed, although the expression for Beff(H) predicts them and the parameter α somewhat increases (~30–35) at this temperature. An additional factor that must be taken into account in this model can be the redistribution of the microscopic current trajectories, which also affects the dissipation in the intergrain medium. At low temperatures under the strong magnetic flux compression (α ~ 30–35), the microscopic trajectories of the current Im can change and tunneling through the neighboring grain is preferred, but the angle between Im and Beff will be noticeably smaller than 90°, although the external (and effective) field direction is perpendicular to the macroscopic current direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Jung, M. A.-K. Mohamed, S. C. Cheng, and J. P. Franck, Phys. Rev. B 42, 6181 (1990).

    ADS  Google Scholar 

  2. B. Andrzejewski, E. Guilmeau, and Ch. Simon, Supercond. Sci. Technol. 14, 904 (2001).

    ADS  Google Scholar 

  3. E. B. Sonin, JETP Lett. 47, 496 (1988).

    ADS  Google Scholar 

  4. D.-X. Chen, R. W. Cross, and A. Sanchez, Cryogenics 33, 695 (1993).

    ADS  Google Scholar 

  5. V. V. Val’kov and B. P. Khrustalev, J. Exp. Theor. Phys. 80, 680 (1995).

    ADS  Google Scholar 

  6. D. M. Gokhfeld, Phys. Solid State 56, 2380 (2014).

    ADS  Google Scholar 

  7. M. A. Dubson, S. T. Herbet, J. J. Calabrese, D. C. Harris, B. R. Patton, and J. C. Garland, Phys. Rev. Lett. 60, 1061 (1988).

    ADS  Google Scholar 

  8. M. I. Petrov, S. N. Krivomazov, B. P. Khrustalev, and K. S. Aleksandrov, Solid State Commun. 82, 453 (1992).

    ADS  Google Scholar 

  9. M. I. Petrov, D. A. Balaev, B. P. Khrustalev, and K. S. Aleksandrov, Phys. C (Amsterdam, Neth.) 235240, 3043 (1994).

  10. J. E. Evetts and B. A. Glowacki, Cryogenics 28, 641 (1988).

    ADS  Google Scholar 

  11. E. Altshuler, J. Musa, J. Barroso, A. R. R. Papa, and V. Venegas, Cryogenics 33, 308 (1993).

    ADS  Google Scholar 

  12. P. Mune, E. Govea-Alcaide, and R. F. Jardim, Phys. C (Amsterdam, Neth.) 354, 275 (2001).

  13. P. Mune, F. C. Fonseca, R. Muccillo, and R. F. Jardim, Phys. C (Amsterdam, Neth.) 390, 363 (2003).

  14. D. A. Balaev, D. M. Gokhfeld, S. I. Popkov, K. A. Shaykhutdinov, and M. I. Petrov, Phys. C (Amsterdam, Neth.) 460462, 1307 (2007).

  15. D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, D. M. Gokhfeld, S. V. Semenov, K. A. Shaykhutdinov, and M. I. Petrov, Phys. Solid State 54, 2155 (2012).

    ADS  Google Scholar 

  16. C. A. M. dos Santos, M. S. da Luz, B. Ferreira, and A. J. S. Machado, Phys. C (Amsterdam, Neth.) 391, 345 (2003).

  17. S. Shifang, Z. Yong, P. Guoqian, Y. Daoq, Z. An, C. Zuyao, Q. Yitai, K. Eiyan, and Z. Qirui, Europhys. Lett. 6, 359 (1988).

    ADS  Google Scholar 

  18. L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, Phys. Rev B 47, 470 (1993).

    ADS  Google Scholar 

  19. M. Prester, E. Babic, M. Stubicar, and P. Nozar’, Phys. Rev. B 49, 6967 (1994).

    ADS  Google Scholar 

  20. M. Prester, Supercond. Sci. Technol. 11, 333 (1998).

    ADS  Google Scholar 

  21. D. Daghero, P. Mazzetti, A. Stepanescu, and P. Tura, Phys. Rev. B 66, 11478 (2002).

    Google Scholar 

  22. N. D. Kuz’michev, JETP Lett. 74, 262 (2001).

    ADS  Google Scholar 

  23. N. D. Kuz’michev, Phys. Solid State 43, 2012 (2001).

    ADS  Google Scholar 

  24. A. A. Sukhanov and V. I. Omelchenko, J. Low Temp. Phys. 29, 297 (2003).

    Google Scholar 

  25. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 46, 1798 (2004).

    ADS  Google Scholar 

  26. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 49, 1455 (2007).

    Google Scholar 

  27. T. V. Sukhareva and V. A. Finkel, Phys. Solid State 50, 1001 (2008).

    ADS  Google Scholar 

  28. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel, Tech. Phys. 53, 321 (2008).

    Google Scholar 

  29. T. V. Sukhareva and V. A. Finkel, Phys. Solid State 53, 914 (2011).

    ADS  Google Scholar 

  30. V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel, and Yu. N. Shakhov, Phys. Solid State 56, 649 (2014).

    ADS  Google Scholar 

  31. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 59, 1492 (2017).

    ADS  Google Scholar 

  32. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 60, 470 (2018).

    ADS  Google Scholar 

  33. M. A. Vasyutin, Tech. Phys. Lett. 39, 1078 (2013).

    ADS  Google Scholar 

  34. D. A. Balaev, D. M. Gokhfeld, A. A. Dubrovski, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, J. Exp. Theor. Phys. 105, 1174 (2007).

    ADS  Google Scholar 

  35. D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfeld, Yu. S. Gokhfeld, and M. I. Petrov, J. Exp. Theor. Phys. 108, 241 (2009).

    ADS  Google Scholar 

  36. D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 50, 1014 (2008).

    ADS  Google Scholar 

  37. K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, Phys. Solid State 51, 1105 (2009).

    ADS  Google Scholar 

  38. D. A. Balaev, A. A. Bykov, S. V. Semenov, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53, 922 (2011).

    ADS  Google Scholar 

  39. D. A. Balaev, S. I. Popkov, S. V. Semenov, A. A. Bykov, E. I. Sabitova, A. A. Dubrovskiy, K. A. Shaikhutdinov, and M. I. Petrov, J. Supercond. Nov. Magn. 24, 2129 (2011).

    Google Scholar 

  40. D. A. Balaev, S. I. Popkov, K. A. Shaikhutdinov, M. I. Petrov, and D. M. Gokhfeld, Phys. Solid State 56, 1542 (2014).

    ADS  Google Scholar 

  41. D. M. Gokhfeld, D. A. Balaev, S. V. Semenov, and M. I. Petrov, Phys. Solid State 57, 2145 (2015).

    ADS  Google Scholar 

  42. M. Olutas, A. Kilic, K. Kilic, and A. Altinkok, J. Supercond. Nov. Magn. 26, 3369 (2013).

    Google Scholar 

  43. A. Altinkok, K. Kilic, M. Olutas, and A. Kilic, J. Supercond. Nov. Magn. 26, 3085 (2013).

    Google Scholar 

  44. M. Olutas, A. Kilic, K. Kilic, and A. Altinkok, Eur. Phys. J. B 85, 382 (2012).

    ADS  Google Scholar 

  45. D. A. Balaev, S. I. Popkov, E. I. Sabitova, S. V. Semenov, K. A. Shaykhutdinov, A. V. Shabanov, and M. I. Petrov, J. Appl. Phys. 110, 093918 (2011).

    ADS  Google Scholar 

  46. D. A. Balaev, S. V. Semenov, and M. I. Petrov, J. Supercond. Nov. Magn. 27, 1425 (2014).

    Google Scholar 

  47. D. A. Balaev, S. V. Semenov, and M. I. Petrov, Phys. Solid State 55, 2422 (2013).

    ADS  Google Scholar 

  48. S. V. Semenov, D. A. Balaev, M. A. Pochekutov, and D. A. Velikanov, Phys. Solid State 59, 1291 (2017).

    ADS  Google Scholar 

  49. D. A. Balaev, S. V. Semenov, and M. A. Pochekutov, J. Appl. Phys. 122, 123902 (2017).

    ADS  Google Scholar 

  50. S. V. Semenov and D. A. Balaev, Phys. C (Amsterdam, Neth.) 550, 19 (2018).

  51. S. V. Semenov and D. A. Balaev, J. Supercond. Nov. Magn. 32, 2409 (2019).

    Google Scholar 

  52. S. V. Semenov, A. D. Balaev, and D. A. Balaev, J. Appl. Phys. 125, 033903 (2019).

    ADS  Google Scholar 

  53. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

  54. D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, D. M. Gokhfeld, S. V. Semenov, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 54, 2155 (2012).

    ADS  Google Scholar 

  55. M. A. Vasyutin, N. D. Kuz’michev, and D. A. Shilkin, Phys. Solid State 58, 236 (2016).

    ADS  Google Scholar 

  56. J. Barden and M. J. Stephen, Phys. Rev. A 140, 1197 (1965).

    ADS  Google Scholar 

  57. D. Lopez and F. de la Cruz, Phys. Rev. B 43, 11478 (1991).

    ADS  Google Scholar 

  58. D. Lopez, R. Decca, and F. de la Cruz, Supercond. Sci. Technol. 5, 276 (1992).

    ADS  Google Scholar 

  59. O. V. Gerashchenko and S. L. Ginzburg, Supercond. Sci. Technol. 13, 332 (2000).

    ADS  Google Scholar 

  60. D. A. Balaev, A. G. Prus, K. A. Shaukhutdinov, D. M. Gokhfeld, and M. I. Petrov, Supercond. Sci. Technol. 20, 495 (2007).

    ADS  Google Scholar 

  61. A. Kilic, K. Kilic, S. Senoussi, and K. Demir, Phys. C (Amsterdam, Neth.) 294, 203 (1998).

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.M. Gokhfeld for discussion of the results. The measurements of the transport properties were performed in part on a PPMS-6000 facility at the Krasnoyarsk Territorial Center of Collective Use, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Semenov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, S.V., Balaev, D.A. Model of the Behavior of a Granular HTS in an External Magnetic Field: Temperature Evolution of the Magnetoresistance Hysteresis. Phys. Solid State 62, 1136–1144 (2020). https://doi.org/10.1134/S1063783420070239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420070239

Keywords:

Navigation