Skip to main content
Log in

Charge State of Metallic Nanoparticles on a Conducting Substrate

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The charge state of a disordered system of metallic nanoparticles on a conducting substrate is analyzed. The theoretical model that describes thermostimulated tunnel transitions of electrons between the particles and also the electron transitions between the particles and the substrate due to the difference in the work functions has been built. The model takes into account the interaction of the charges of the nearest particles and also the interaction of the particle charges with the image charges in the substrate. The Monte Carlo computer simulation for this model makes it possible to obtain the distribution pattern of the charge in structures with different nanoparticle density in a one-layer coating on the substrate at various values of the dielectric permittivity of the environment and various values of the difference of the work functions of particles and the substrate. The numerical results for structures with Ni and Pt nanoparticles on a carbon substrate, which are often used as catalysts of chemical processes, are presented as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. In the high-dense structures with multilayer coating from close-packed metal particles on an insulator substrate, the charge is delocalized in the coating bulk, so that the coating properties become similar to properties of defect metal.

REFERENCES

  1. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973).

    Article  ADS  Google Scholar 

  2. B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975).

    Article  ADS  Google Scholar 

  3. J. Klafter and P. Sheng, J. Phys. C 17, L93 (1984).

    Article  ADS  Google Scholar 

  4. E. Cuevas, M. Ortuno, and J. Ruiz, Phys. Rev. Lett. 71, 1871 (1993).

    Article  ADS  Google Scholar 

  5. E. Z. Meilikhov, J. Exp. Theor. Phys. 93, 625 (2001).

    Article  ADS  Google Scholar 

  6. A. A. Licalter, Phys. A (Amsterdam, Neth.) 291, 144 (2001).

  7. T. N. Rostovshchikova, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, S. A. Gurevich, D. A. Yavsin, and V. M. Kozhevin, in Advanced Nanomaterials for Catalysis and Energy Synthesis, Characterization and Applications, Ed. by V. A. Sadykov (Elsevier, Amsterdam, 2018), p. 61.

    Google Scholar 

  8. D. S. Il’yushchenkov, V. M. Kozhevin, and S. A. Gurevich, Phys. Solid State 57, 1710 (2015).

    Article  ADS  Google Scholar 

  9. G. Pacchioni, Phys. Chem. Chem. Phys. 15, 1737 (2013).

    Article  Google Scholar 

  10. Y. Lykhach, S. M. Kozlov, T. Skála, A. Tovt, V. Stetsovych, N. Tsud, F. Dvořák, V. Johánek, A. Neitzel, J. Mysliveček, S. Fabris, V. Matolín, K. M. Neyman, and J. Libuda, Nat. Mater. 15, 284 (2016).

    Article  ADS  Google Scholar 

  11. Y. Peng, B. Lu, N. Wang, L. Li, and Sh. Chen, Phys. Chem. Chem. Phys. 19, 9336 (2017).

    Article  Google Scholar 

  12. P. Frondelius, A. Hellman, K. Honkala, H. Häkkinen, and H. Grönbeck, Phys. Rev. B 78, 085426 (2008).

    Article  ADS  Google Scholar 

  13. L. Giordano and G. Pacchioni, Acc. Chem. Res. 44, 1244 (2011).

    Article  Google Scholar 

  14. Y. Zhang, O. Pluchery, L. Caillard, A-F. Lamic-Humblot, S. Casale, Y. J. Chabal, and M. Salmeron, Nano Lett. 15, 51 (2015).

    Article  ADS  Google Scholar 

  15. S. A. Gurevich, D. S. Il’yushchenkov, D. A. Yavsin, N. V. Glebova, A. A. Nechitailov, N. K. Zelenina, and A. A. Tomasov, Russ. J. Electrochem. 53, 567 (2017).

    Article  Google Scholar 

  16. D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, Ed. by B. L. Altshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991).

    Google Scholar 

  17. W. Zwerger and M. Scharpf, Z. Phys. B: Condens. Matter 85, 421 (1991).

    Article  ADS  Google Scholar 

  18. E. Palacios-Lidón, C. R. Henry, and C. Barth, ACS Catal. 4, 1838 (2014).

    Article  Google Scholar 

  19. D. A. Zakheim, I. V. Rozhanski, and S. A. Gurevich, Microel. Eng. 69, 646 (2003).

    Article  Google Scholar 

  20. Ph. E. Gill, W. Murray, and M. A. Saunders, SIAM Rev. 47, 99 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).

    Article  ADS  Google Scholar 

  22. V. M. Kozhevin, D. A. Yavsin, D. S. Il’yushchenkov, T. N. Rostovshchikova, E. S. Lokteva, and S. A. Gurevich, in Synthesis, Structure and Properties of Metal/Semiconductor Containing Nanostructured Composites, Ed. by L. I. Trakhtenberg and M. Ya. Mel’nikov (Tekhnosfera, Moscow, 2016) [in Russian].

    Google Scholar 

  23. V. S. Fomenko, Emission Properties of Materials (Nauk. Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  24. H. J. Kreuzer, Surf. Interface Anal. 36, 372 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Il’yushchenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’yushchenkov, D.S., Kozhevin, V.M. & Gurevich, S.A. Charge State of Metallic Nanoparticles on a Conducting Substrate. Phys. Solid State 61, 1683–1689 (2019). https://doi.org/10.1134/S1063783419100184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419100184

Keywords:

Navigation