Skip to main content
Log in

Properties of MgFe2O4 Nanoparticles Synthesized by Ultrasonic Aerosol Pyrolysis for Biomedical Applications

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We present the data of studies on the structure, phase states, and magnetic properties of magnetic nanoparticles (MNPs) of magnesium ferrite spinel (MgFe2O4), synthesized by ultrasonic aerosols pyrolysis. Primary single-phase MNPs with an average size of 9.6, 11.5, and 14.0 nm, synthesized from precursors at concentrations of 0.06, 0.12, and 0.24 M, respectively, agglomerate into tightly aggregated spherical particles (secondary particles) with sizes of 206, 300, and 340 nm, respectively. Primary particles inside the spheres do not interact with each other and are in a superparamagnetic state. There is a layer on the surface of the particles, the magnetic structure of which differs from the structure of the inner part of the MNP; this is explained by the formation of a canted spin structure or a spin glass state in the surface layer of the MNPs. MgFe2O4 nanospheres obtained from a precursor at a concentration of 0.06 M are most promising as valid sources of heat in magnetic hyperthermia therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Hayashi, Y. Sato, W. Sakamoto, and T. Yogo, ACS Biomater. Sci. Eng. 3, 95 (2017).

    Article  Google Scholar 

  2. E. C. Abenojar, S. Wickramasinghe, J. B. Concepcion, A. Cristina, and S. Samia, Prog. Nat. Sci. 26, 440 (2016).

    Article  Google Scholar 

  3. R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott, and C. B. Taylor, Ann. Surg. 146, 596 (1957).

    Article  Google Scholar 

  4. A. M. Granov, S. F. Vershinina, R. B. Samsonov, A. B. Markochev, and V. I. Evtushenko, Med. Akad. Zh. 17, 82 (2017).

    Google Scholar 

  5. N. V. Tkachenko, L. P. Ol’khovik, and A. S. Kamzin, Phys. Solid State 53, 1588 (2011).

    Article  Google Scholar 

  6. P. Kaur, L. Maureen Aliru, Ch. S. Awalpreet, A. Asea, and S. Krishnan, Int. J. Hypertherm. 32, 76 (2016).

    Article  Google Scholar 

  7. E. A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, and F. J. Teran, Appl. Phys. Rev. 2, 041302 (2015).

    Article  Google Scholar 

  8. F. Lu, A. Popa, S. Zhou, J.-J. Zhu, and A. C. S. Samia, Chem. Commun. 49, 11436 (2013).

    Article  Google Scholar 

  9. T.-K. Nguyen, H. T. T. Duong, R. Selvanayagam, C. Boyer, and N. Barraud, Sci. Rep. 5, 18385 (2015).

    Article  ADS  Google Scholar 

  10. C. Yakacki, N. Satarkar, K. Gall, R. Likos, and Z. Hilt, J. Appl. Polym. Sci. 112, 3166 (2019).

    Article  Google Scholar 

  11. U. Gneveckow, A. Jordan, R. Scholz, V. Brüss, N. Waldöfner, J. Ricke, A. Feussner, B. Hildebrandt, B. Rau, and P. Wust, Med. Phys. 31, 1444 (2004).

    Article  Google Scholar 

  12. K. Mahmoudi, A. Bouras, D. Bozec, R. Ivkov, and C. Hadjipanayis, Int. J. Hypertherm. (2018, in press). https://doi.org/10.1080/02656736.2018.1430867

  13. http://www.magforce.de/en/unternehmen/ueber-uns.html.

  14. Suriyanto, E. Y. K. Ng, and S. D. Kumar, BioMed Eng OnLine 16, 36 (2017).

    Article  Google Scholar 

  15. A. E. Deatsch and B. A. Evans, J. Magn. Magn. Mater. 354, 163 (2014).

    Article  ADS  Google Scholar 

  16. V. M. Khot, A. B. Salunkhe, M. R. Phadatare, and S. H. Pawar, Mater. Chem. Phys. 132, 782 (2012).

    Article  Google Scholar 

  17. V. H. Khot, A. B. Salunkhe, N. D. Thorat, M. R. Phadatre, and S. H. Pawar, J. Magn. Magn. Mater. 332, 48 (2013).

    Article  ADS  Google Scholar 

  18. A. Franco, Jr. and M. S. Silva, J. Appl. Phys. 109, 07B505 (2011).

  19. A. C. Druc, A. M. Dumitrescu, A. I. Borhan, V. Nica, A. R. Iordan, and M. N. Palamaru, Cent. Eur. J. Chem. 11, 1330 (2013).

    Google Scholar 

  20. D. T. T. Nguyet, N. P. Duong, L. T. Hung, T. D. Hien, and T. Satoh, J. Alloys Compd. 509, 6621 (2011).

    Article  Google Scholar 

  21. H. Aono, J. Ceram. Soc. Jpn. 122, 237 (2014).

    Article  Google Scholar 

  22. I. Sharifi, H. Shokrollahi, and S. Amiri, J. Magn. Magn. Mater. 324, 903 (2012).

    Article  ADS  Google Scholar 

  23. M. R. Barati, C. Selomulya, and K. Suzuki, J. Appl. Phys. 115, 17B522 (2014).

  24. M. Reza Barati, C. Selomulya, and K. Suzuki, J. Appl. Phys. 115, 17B522 (2014).

  25. H. Das, T. Arai, N. Debnath, N. Sakamoto, K. Shinozaki, H. Suzuki, and N. Wakiya, Adv. Powder Technol. 27, 541 (2016).

    Article  Google Scholar 

  26. V. Sepelak, D. Baabe, D. Mienert, F. J. Litterst, and K. D. Becker, Scr. Mater. 48, 961 (2003).

    Article  Google Scholar 

  27. S. D. Dalt, A. S. Takimi, T. M. Volkmer, V. C. Sousa, and C. P. Bergmann, Powder Technol. 210, 103 (2011).

    Article  Google Scholar 

  28. H. Das, N. Sakamoto, H. Aono, K. Shinozaki, H. Suzuki, and N. Wakiya, J. Magn. Magn. Mater. 392, 91 (2015).

    Article  ADS  Google Scholar 

  29. H. Das, N. Debnath, A. Toda, T. Kawaguchi, N. Sakamoto, H. Aono, K. Shinozaki, H. Suzuki, and N. Wakiya, Adv. Powder Technol. 28, 1696 (2017).

    Article  Google Scholar 

  30. H. Das, N. Debnath, A. Toda, T. Kawaguchi, N. Sakamoto, Sh. Manjura Hoque, K. Shinozaki, H. Suzuki, and N. Wakiya, Adv. Powder Technol. 29, 283 (2017).

    Article  Google Scholar 

  31. A. S. Kamzin, H. Das, N. Wakiya, and A. A. Valiullin, Phys. Solid State 60, 1752 (2018).

    Article  ADS  Google Scholar 

  32. M. Arruebo, R. F. Pacheco, M. R. Ibara, and J. S. Santamaria, Nano Today 2, 22 (2007).

    Article  Google Scholar 

  33. R. John and S. A. Bopart, Curr. Med. Chem. 18, 2103 (2011).

    Article  Google Scholar 

  34. M. M. Rashad, J. Mater. Sci. 42, 5248 (2007).

    Article  ADS  Google Scholar 

  35. N. Wakiya, M. Yamasaki, T. Adachi, A. Inukai, N. Sakamoto, D. Fu. O. Sakurai, K. Shinozaki, and H. Suzuki, Mater. Sci. Eng. B 173, 195 (2010).

    Article  Google Scholar 

  36. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  37. A. S. Kamzin, P. Lampen-Kelley, and M. H. Phan, Phys. Solid State 58, 792 (2016).

    Article  ADS  Google Scholar 

  38. A. S. Kamzin and N. Wakiya, Phys. Solid State 60, 2608 (2018).

    Article  ADS  Google Scholar 

  39. M. A. Chuev, V. M. Cherepanov, and M. A. Polikarpov, JETP Lett. 92, 21 (2010).

    Article  ADS  Google Scholar 

  40. Mössbauer Spectroscopy and Transitions Metal Chemistry: Fundamentals and Applications, Ed. by P. Gütlich, E. Bill, and A. X. Trautwein (Springer, Berlin, 2011).

    Google Scholar 

  41. D. Jugovic, N. Cvjeticanin, V. Kusigerski, M. Mitric, M. Milijkovic, D. Makovec, and D. Uskokovic, Mater. Res. Bull. 42, 515 (2007).

    Article  Google Scholar 

  42. S. Mørup and M. F. Hansen, in Handbook of Magnetism and Advanced Magnetic Materials, Ed. by H. Kronmüller and S. Parkin (Wiley, 2007), Vol. 4.

    Google Scholar 

  43. G. A. Sawatzky, C. Boekema, and F. van der Woude, in Proceedings of the International Conference Magnetism, Dresden, 1971, pp. 238–252.

  44. F. van der Woude and G. A. Sawatzky, Phys. Rev. B 4, 3159 (1971).

    Article  ADS  Google Scholar 

  45. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, and S. Foner, Phys. Rev. Lett. 77, 394 (1996).

    Article  ADS  Google Scholar 

  46. L. Theil Kuhn, A. Bojesen, L. Timmermann, M. Meedom Nielsen, and S. Morup, J. Phys.: Condens. Matter 14, 13551 (2002).

    ADS  Google Scholar 

  47. S. Morup, E. Brok, and C. Frandsen, J. Nanomater. (2013). https://doi.org/10.1155/2013/720629

  48. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B 59, 6321 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzin, A.S., Valiullin, A.A., Semenov, V.G. et al. Properties of MgFe2O4 Nanoparticles Synthesized by Ultrasonic Aerosol Pyrolysis for Biomedical Applications. Phys. Solid State 61, 1113–1121 (2019). https://doi.org/10.1134/S1063783419060076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419060076

Navigation